Skip to content

careamist

A class to train, predict and export models in CAREamics.

CAREamist #

Main CAREamics class, allowing training and prediction using various algorithms.

Parameters:

Name Type Description Default
source pathlib.Path or str or CAREamics Configuration

Path to a configuration file or a trained model.

required
work_dir str

Path to working directory in which to save checkpoints and logs, by default None.

None
callbacks list of Callback

List of callbacks to use during training and prediction, by default None.

None

Attributes:

Name Type Description
model CAREamicsModule

CAREamics model.

cfg Configuration

CAREamics configuration.

trainer Trainer

PyTorch Lightning trainer.

experiment_logger TensorBoardLogger or WandbLogger

Experiment logger, "wandb" or "tensorboard".

work_dir Path

Working directory.

train_datamodule TrainDataModule

Training datamodule.

pred_datamodule PredictDataModule

Prediction datamodule.

Source code in src/careamics/careamist.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
class CAREamist:
    """Main CAREamics class, allowing training and prediction using various algorithms.

    Parameters
    ----------
    source : pathlib.Path or str or CAREamics Configuration
        Path to a configuration file or a trained model.
    work_dir : str, optional
        Path to working directory in which to save checkpoints and logs,
        by default None.
    callbacks : list of Callback, optional
        List of callbacks to use during training and prediction, by default None.

    Attributes
    ----------
    model : CAREamicsModule
        CAREamics model.
    cfg : Configuration
        CAREamics configuration.
    trainer : Trainer
        PyTorch Lightning trainer.
    experiment_logger : TensorBoardLogger or WandbLogger
        Experiment logger, "wandb" or "tensorboard".
    work_dir : pathlib.Path
        Working directory.
    train_datamodule : TrainDataModule
        Training datamodule.
    pred_datamodule : PredictDataModule
        Prediction datamodule.
    """

    @overload
    def __init__(  # numpydoc ignore=GL08
        self,
        source: Union[Path, str],
        work_dir: Optional[Union[Path, str]] = None,
        callbacks: Optional[list[Callback]] = None,
    ) -> None: ...

    @overload
    def __init__(  # numpydoc ignore=GL08
        self,
        source: Configuration,
        work_dir: Optional[Union[Path, str]] = None,
        callbacks: Optional[list[Callback]] = None,
    ) -> None: ...

    def __init__(
        self,
        source: Union[Path, str, Configuration],
        work_dir: Optional[Union[Path, str]] = None,
        callbacks: Optional[list[Callback]] = None,
    ) -> None:
        """
        Initialize CAREamist with a configuration object or a path.

        A configuration object can be created using directly by calling `Configuration`,
        using the configuration factory or loading a configuration from a yaml file.

        Path can contain either a yaml file with parameters, or a saved checkpoint.

        If no working directory is provided, the current working directory is used.

        Parameters
        ----------
        source : pathlib.Path or str or CAREamics Configuration
            Path to a configuration file or a trained model.
        work_dir : str or pathlib.Path, optional
            Path to working directory in which to save checkpoints and logs,
            by default None.
        callbacks : list of Callback, optional
            List of callbacks to use during training and prediction, by default None.

        Raises
        ------
        NotImplementedError
            If the model is loaded from BioImage Model Zoo.
        ValueError
            If no hyper parameters are found in the checkpoint.
        ValueError
            If no data module hyper parameters are found in the checkpoint.
        """
        # select current working directory if work_dir is None
        if work_dir is None:
            self.work_dir = Path.cwd()
            logger.warning(
                f"No working directory provided. Using current working directory: "
                f"{self.work_dir}."
            )
        else:
            self.work_dir = Path(work_dir)

        # configuration object
        if isinstance(source, Configuration):
            self.cfg = source

            # instantiate model
            if isinstance(self.cfg.algorithm_config, UNetBasedAlgorithm):
                self.model = FCNModule(
                    algorithm_config=self.cfg.algorithm_config,
                )
            else:
                raise NotImplementedError("Architecture not supported.")

        # path to configuration file or model
        else:
            # TODO: update this check so models can be downloaded directly from BMZ
            source = check_path_exists(source)

            # configuration file
            if source.is_file() and (
                source.suffix == ".yaml" or source.suffix == ".yml"
            ):
                # load configuration
                self.cfg = load_configuration(source)

                # instantiate model
                if isinstance(self.cfg.algorithm_config, UNetBasedAlgorithm):
                    self.model = FCNModule(
                        algorithm_config=self.cfg.algorithm_config,
                    )  # type: ignore
                else:
                    raise NotImplementedError("Architecture not supported.")

            # attempt loading a pre-trained model
            else:
                self.model, self.cfg = load_pretrained(source)

        # define the checkpoint saving callback
        self._define_callbacks(callbacks)

        # instantiate logger
        csv_logger = CSVLogger(
            name=self.cfg.experiment_name,
            save_dir=self.work_dir / "csv_logs",
        )

        if self.cfg.training_config.has_logger():
            if self.cfg.training_config.logger == SupportedLogger.WANDB:
                experiment_logger: LOGGER_TYPES = [
                    WandbLogger(
                        name=self.cfg.experiment_name,
                        save_dir=self.work_dir / Path("wandb_logs"),
                    ),
                    csv_logger,
                ]
            elif self.cfg.training_config.logger == SupportedLogger.TENSORBOARD:
                experiment_logger = [
                    TensorBoardLogger(
                        save_dir=self.work_dir / Path("tb_logs"),
                    ),
                    csv_logger,
                ]
        else:
            experiment_logger = [csv_logger]

        # instantiate trainer
        self.trainer = Trainer(
            max_epochs=self.cfg.training_config.num_epochs,
            precision=self.cfg.training_config.precision,
            max_steps=self.cfg.training_config.max_steps,
            check_val_every_n_epoch=self.cfg.training_config.check_val_every_n_epoch,
            enable_progress_bar=self.cfg.training_config.enable_progress_bar,
            accumulate_grad_batches=self.cfg.training_config.accumulate_grad_batches,
            gradient_clip_val=self.cfg.training_config.gradient_clip_val,
            gradient_clip_algorithm=self.cfg.training_config.gradient_clip_algorithm,
            callbacks=self.callbacks,
            default_root_dir=self.work_dir,
            logger=experiment_logger,
        )

        # place holder for the datamodules
        self.train_datamodule: Optional[TrainDataModule] = None
        self.pred_datamodule: Optional[PredictDataModule] = None

    def _define_callbacks(self, callbacks: Optional[list[Callback]] = None) -> None:
        """Define the callbacks for the training loop.

        Parameters
        ----------
        callbacks : list of Callback, optional
            List of callbacks to use during training and prediction, by default None.
        """
        self.callbacks = [] if callbacks is None else callbacks

        # check that user callbacks are not any of the CAREamics callbacks
        for c in self.callbacks:
            if isinstance(c, ModelCheckpoint) or isinstance(c, EarlyStopping):
                raise ValueError(
                    "ModelCheckpoint and EarlyStopping callbacks are already defined "
                    "in CAREamics and should only be modified through the "
                    "training configuration (see TrainingConfig)."
                )

            if isinstance(c, HyperParametersCallback) or isinstance(
                c, ProgressBarCallback
            ):
                raise ValueError(
                    "HyperParameter and ProgressBar callbacks are defined internally "
                    "and should not be passed as callbacks."
                )

        # checkpoint callback saves checkpoints during training
        self.callbacks.extend(
            [
                HyperParametersCallback(self.cfg),
                ModelCheckpoint(
                    dirpath=self.work_dir / Path("checkpoints"),
                    filename=self.cfg.experiment_name,
                    **self.cfg.training_config.checkpoint_callback.model_dump(),
                ),
                ProgressBarCallback(),
            ]
        )

        # early stopping callback
        if self.cfg.training_config.early_stopping_callback is not None:
            self.callbacks.append(
                EarlyStopping(self.cfg.training_config.early_stopping_callback)
            )

    def stop_training(self) -> None:
        """Stop the training loop."""
        # raise stop training flag
        self.trainer.should_stop = True
        self.trainer.limit_val_batches = 0  # skip  validation

    # TODO: is there are more elegant way than calling train again after _train_on_paths
    def train(
        self,
        *,
        datamodule: Optional[TrainDataModule] = None,
        train_source: Optional[Union[Path, str, NDArray]] = None,
        val_source: Optional[Union[Path, str, NDArray]] = None,
        train_target: Optional[Union[Path, str, NDArray]] = None,
        val_target: Optional[Union[Path, str, NDArray]] = None,
        use_in_memory: bool = True,
        val_percentage: float = 0.1,
        val_minimum_split: int = 1,
    ) -> None:
        """
        Train the model on the provided data.

        If a datamodule is provided, then training will be performed using it.
        Alternatively, the training data can be provided as arrays or paths.

        If `use_in_memory` is set to True, the source provided as Path or str will be
        loaded in memory if it fits. Otherwise, training will be performed by loading
        patches from the files one by one. Training on arrays is always performed
        in memory.

        If no validation source is provided, then the validation is extracted from
        the training data using `val_percentage` and `val_minimum_split`. In the case
        of data provided as Path or str, the percentage and minimum number are applied
        to the number of files. For arrays, it is the number of patches.

        Parameters
        ----------
        datamodule : TrainDataModule, optional
            Datamodule to train on, by default None.
        train_source : pathlib.Path or str or NDArray, optional
            Train source, if no datamodule is provided, by default None.
        val_source : pathlib.Path or str or NDArray, optional
            Validation source, if no datamodule is provided, by default None.
        train_target : pathlib.Path or str or NDArray, optional
            Train target source, if no datamodule is provided, by default None.
        val_target : pathlib.Path or str or NDArray, optional
            Validation target source, if no datamodule is provided, by default None.
        use_in_memory : bool, optional
            Use in memory dataset if possible, by default True.
        val_percentage : float, optional
            Percentage of validation extracted from training data, by default 0.1.
        val_minimum_split : int, optional
            Minimum number of validation (patch or file) extracted from training data,
            by default 1.

        Raises
        ------
        ValueError
            If both `datamodule` and `train_source` are provided.
        ValueError
            If sources are not of the same type (e.g. train is an array and val is
            a Path).
        ValueError
            If the training target is provided to N2V.
        ValueError
            If neither a datamodule nor a source is provided.
        """
        if datamodule is not None and train_source is not None:
            raise ValueError(
                "Only one of `datamodule` and `train_source` can be provided."
            )

        # check that inputs are the same type
        source_types = {
            type(s)
            for s in (train_source, val_source, train_target, val_target)
            if s is not None
        }
        if len(source_types) > 1:
            raise ValueError("All sources should be of the same type.")

        # train
        if datamodule is not None:
            self._train_on_datamodule(datamodule=datamodule)

        else:
            # raise error if target is provided to N2V
            if self.cfg.algorithm_config.algorithm == SupportedAlgorithm.N2V.value:
                if train_target is not None:
                    raise ValueError(
                        "Training target not compatible with N2V training."
                    )

            # dispatch the training
            if isinstance(train_source, np.ndarray):
                # mypy checks
                assert isinstance(val_source, np.ndarray) or val_source is None
                assert isinstance(train_target, np.ndarray) or train_target is None
                assert isinstance(val_target, np.ndarray) or val_target is None

                self._train_on_array(
                    train_source,
                    val_source,
                    train_target,
                    val_target,
                    val_percentage,
                    val_minimum_split,
                )

            elif isinstance(train_source, Path) or isinstance(train_source, str):
                # mypy checks
                assert (
                    isinstance(val_source, Path)
                    or isinstance(val_source, str)
                    or val_source is None
                )
                assert (
                    isinstance(train_target, Path)
                    or isinstance(train_target, str)
                    or train_target is None
                )
                assert (
                    isinstance(val_target, Path)
                    or isinstance(val_target, str)
                    or val_target is None
                )

                self._train_on_path(
                    train_source,
                    val_source,
                    train_target,
                    val_target,
                    use_in_memory,
                    val_percentage,
                    val_minimum_split,
                )

            else:
                raise ValueError(
                    f"Invalid input, expected a str, Path, array or TrainDataModule "
                    f"instance (got {type(train_source)})."
                )

    def _train_on_datamodule(self, datamodule: TrainDataModule) -> None:
        """
        Train the model on the provided datamodule.

        Parameters
        ----------
        datamodule : TrainDataModule
            Datamodule to train on.
        """
        # register datamodule
        self.train_datamodule = datamodule

        # set defaults (in case `stop_training` was called before)
        self.trainer.should_stop = False
        self.trainer.limit_val_batches = 1.0  # 100%

        # train
        self.trainer.fit(self.model, datamodule=datamodule)

    def _train_on_array(
        self,
        train_data: NDArray,
        val_data: Optional[NDArray] = None,
        train_target: Optional[NDArray] = None,
        val_target: Optional[NDArray] = None,
        val_percentage: float = 0.1,
        val_minimum_split: int = 5,
    ) -> None:
        """
        Train the model on the provided data arrays.

        Parameters
        ----------
        train_data : NDArray
            Training data.
        val_data : NDArray, optional
            Validation data, by default None.
        train_target : NDArray, optional
            Train target data, by default None.
        val_target : NDArray, optional
            Validation target data, by default None.
        val_percentage : float, optional
            Percentage of patches to use for validation, by default 0.1.
        val_minimum_split : int, optional
            Minimum number of patches to use for validation, by default 5.
        """
        # create datamodule
        datamodule = TrainDataModule(
            data_config=self.cfg.data_config,
            train_data=train_data,
            val_data=val_data,
            train_data_target=train_target,
            val_data_target=val_target,
            val_percentage=val_percentage,
            val_minimum_split=val_minimum_split,
        )

        # train
        self.train(datamodule=datamodule)

    def _train_on_path(
        self,
        path_to_train_data: Union[Path, str],
        path_to_val_data: Optional[Union[Path, str]] = None,
        path_to_train_target: Optional[Union[Path, str]] = None,
        path_to_val_target: Optional[Union[Path, str]] = None,
        use_in_memory: bool = True,
        val_percentage: float = 0.1,
        val_minimum_split: int = 1,
    ) -> None:
        """
        Train the model on the provided data paths.

        Parameters
        ----------
        path_to_train_data : pathlib.Path or str
            Path to the training data.
        path_to_val_data : pathlib.Path or str, optional
            Path to validation data, by default None.
        path_to_train_target : pathlib.Path or str, optional
            Path to train target data, by default None.
        path_to_val_target : pathlib.Path or str, optional
            Path to validation target data, by default None.
        use_in_memory : bool, optional
            Use in memory dataset if possible, by default True.
        val_percentage : float, optional
            Percentage of files to use for validation, by default 0.1.
        val_minimum_split : int, optional
            Minimum number of files to use for validation, by default 1.
        """
        # sanity check on data (path exists)
        path_to_train_data = check_path_exists(path_to_train_data)

        if path_to_val_data is not None:
            path_to_val_data = check_path_exists(path_to_val_data)

        if path_to_train_target is not None:
            path_to_train_target = check_path_exists(path_to_train_target)

        if path_to_val_target is not None:
            path_to_val_target = check_path_exists(path_to_val_target)

        # create datamodule
        datamodule = TrainDataModule(
            data_config=self.cfg.data_config,
            train_data=path_to_train_data,
            val_data=path_to_val_data,
            train_data_target=path_to_train_target,
            val_data_target=path_to_val_target,
            use_in_memory=use_in_memory,
            val_percentage=val_percentage,
            val_minimum_split=val_minimum_split,
        )

        # train
        self.train(datamodule=datamodule)

    @overload
    def predict(  # numpydoc ignore=GL08
        self, source: PredictDataModule
    ) -> Union[list[NDArray], NDArray]: ...

    @overload
    def predict(  # numpydoc ignore=GL08
        self,
        source: Union[Path, str],
        *,
        batch_size: int = 1,
        tile_size: Optional[tuple[int, ...]] = None,
        tile_overlap: Optional[tuple[int, ...]] = (48, 48),
        axes: Optional[str] = None,
        data_type: Optional[Literal["tiff", "custom"]] = None,
        tta_transforms: bool = False,
        dataloader_params: Optional[dict] = None,
        read_source_func: Optional[Callable] = None,
        extension_filter: str = "",
    ) -> Union[list[NDArray], NDArray]: ...

    @overload
    def predict(  # numpydoc ignore=GL08
        self,
        source: NDArray,
        *,
        batch_size: int = 1,
        tile_size: Optional[tuple[int, ...]] = None,
        tile_overlap: Optional[tuple[int, ...]] = (48, 48),
        axes: Optional[str] = None,
        data_type: Optional[Literal["array"]] = None,
        tta_transforms: bool = False,
        dataloader_params: Optional[dict] = None,
    ) -> Union[list[NDArray], NDArray]: ...

    def predict(
        self,
        source: Union[PredictDataModule, Path, str, NDArray],
        *,
        batch_size: int = 1,
        tile_size: Optional[tuple[int, ...]] = None,
        tile_overlap: Optional[tuple[int, ...]] = (48, 48),
        axes: Optional[str] = None,
        data_type: Optional[Literal["array", "tiff", "custom"]] = None,
        tta_transforms: bool = False,
        dataloader_params: Optional[dict] = None,
        read_source_func: Optional[Callable] = None,
        extension_filter: str = "",
        **kwargs: Any,
    ) -> Union[list[NDArray], NDArray]:
        """
        Make predictions on the provided data.

        Input can be a CAREamicsPredData instance, a path to a data file, or a numpy
        array.

        If `data_type`, `axes` and `tile_size` are not provided, the training
        configuration parameters will be used, with the `patch_size` instead of
        `tile_size`.

        Test-time augmentation (TTA) can be switched on using the `tta_transforms`
        parameter. The TTA augmentation applies all possible flip and 90 degrees
        rotations to the prediction input and averages the predictions. TTA augmentation
        should not be used if you did not train with these augmentations.

        Note that if you are using a UNet model and tiling, the tile size must be
        divisible in every dimension by 2**d, where d is the depth of the model. This
        avoids artefacts arising from the broken shift invariance induced by the
        pooling layers of the UNet. If your image has less dimensions, as it may
        happen in the Z dimension, consider padding your image.

        Parameters
        ----------
        source : PredictDataModule, pathlib.Path, str or numpy.ndarray
            Data to predict on.
        batch_size : int, default=1
            Batch size for prediction.
        tile_size : tuple of int, optional
            Size of the tiles to use for prediction.
        tile_overlap : tuple of int, default=(48, 48)
            Overlap between tiles, can be None.
        axes : str, optional
            Axes of the input data, by default None.
        data_type : {"array", "tiff", "custom"}, optional
            Type of the input data.
        tta_transforms : bool, default=True
            Whether to apply test-time augmentation.
        dataloader_params : dict, optional
            Parameters to pass to the dataloader.
        read_source_func : Callable, optional
            Function to read the source data.
        extension_filter : str, default=""
            Filter for the file extension.
        **kwargs : Any
            Unused.

        Returns
        -------
        list of NDArray or NDArray
            Predictions made by the model.

        Raises
        ------
        ValueError
            If mean and std are not provided in the configuration.
        ValueError
            If tile size is not divisible by 2**depth for UNet models.
        ValueError
            If tile overlap is not specified.
        """
        if (
            self.cfg.data_config.image_means is None
            or self.cfg.data_config.image_stds is None
        ):
            raise ValueError("Mean and std must be provided in the configuration.")

        # tile size for UNets
        if tile_size is not None:
            model = self.cfg.algorithm_config.model

            if model.architecture == SupportedArchitecture.UNET.value:
                # tile size must be equal to k*2^n, where n is the number of pooling
                # layers (equal to the depth) and k is an integer
                depth = model.depth
                tile_increment = 2**depth

                for i, t in enumerate(tile_size):
                    if t % tile_increment != 0:
                        raise ValueError(
                            f"Tile size must be divisible by {tile_increment} along "
                            f"all axes (got {t} for axis {i}). If your image size is "
                            f"smaller along one axis (e.g. Z), consider padding the "
                            f"image."
                        )

            # tile overlaps must be specified
            if tile_overlap is None:
                raise ValueError("Tile overlap must be specified.")

        # create the prediction
        self.pred_datamodule = create_predict_datamodule(
            pred_data=source,
            data_type=data_type or self.cfg.data_config.data_type,
            axes=axes or self.cfg.data_config.axes,
            image_means=self.cfg.data_config.image_means,
            image_stds=self.cfg.data_config.image_stds,
            tile_size=tile_size,
            tile_overlap=tile_overlap,
            batch_size=batch_size or self.cfg.data_config.batch_size,
            tta_transforms=tta_transforms,
            read_source_func=read_source_func,
            extension_filter=extension_filter,
            dataloader_params=dataloader_params,
        )

        # predict
        predictions = self.trainer.predict(
            model=self.model, datamodule=self.pred_datamodule
        )
        return convert_outputs(predictions, self.pred_datamodule.tiled)

    def predict_to_disk(
        self,
        source: Union[PredictDataModule, Path, str],
        *,
        batch_size: int = 1,
        tile_size: Optional[tuple[int, ...]] = None,
        tile_overlap: Optional[tuple[int, ...]] = (48, 48),
        axes: Optional[str] = None,
        data_type: Optional[Literal["tiff", "custom"]] = None,
        tta_transforms: bool = False,
        dataloader_params: Optional[dict] = None,
        read_source_func: Optional[Callable] = None,
        extension_filter: str = "",
        write_type: Literal["tiff", "custom"] = "tiff",
        write_extension: Optional[str] = None,
        write_func: Optional[WriteFunc] = None,
        write_func_kwargs: Optional[dict[str, Any]] = None,
        prediction_dir: Union[Path, str] = "predictions",
        **kwargs,
    ) -> None:
        """
        Make predictions on the provided data and save outputs to files.

        The predictions will be saved in a new directory 'predictions' within the set
        working directory. The directory stucture within the 'predictions' directory
        will match that of the source directory.

        The `source` must be from files and not arrays. The file names of the
        predictions will match those of the source. If there is more than one sample
        within a file, the samples will be saved to seperate files. The file names of
        samples will have the name of the corresponding source file but with the sample
        index appended. E.g. If the the source file name is 'images.tiff' then the first
        sample's prediction will be saved with the file name "image_0.tiff".
        Input can be a PredictDataModule instance, a path to a data file, or a numpy
        array.

        If `data_type`, `axes` and `tile_size` are not provided, the training
        configuration parameters will be used, with the `patch_size` instead of
        `tile_size`.

        Test-time augmentation (TTA) can be switched on using the `tta_transforms`
        parameter. The TTA augmentation applies all possible flip and 90 degrees
        rotations to the prediction input and averages the predictions. TTA augmentation
        should not be used if you did not train with these augmentations.

        Note that if you are using a UNet model and tiling, the tile size must be
        divisible in every dimension by 2**d, where d is the depth of the model. This
        avoids artefacts arising from the broken shift invariance induced by the
        pooling layers of the UNet. If your image has less dimensions, as it may
        happen in the Z dimension, consider padding your image.

        Parameters
        ----------
        source : PredictDataModule or pathlib.Path, str
            Data to predict on.
        batch_size : int, default=1
            Batch size for prediction.
        tile_size : tuple of int, optional
            Size of the tiles to use for prediction.
        tile_overlap : tuple of int, default=(48, 48)
            Overlap between tiles.
        axes : str, optional
            Axes of the input data, by default None.
        data_type : {"array", "tiff", "custom"}, optional
            Type of the input data.
        tta_transforms : bool, default=True
            Whether to apply test-time augmentation.
        dataloader_params : dict, optional
            Parameters to pass to the dataloader.
        read_source_func : Callable, optional
            Function to read the source data.
        extension_filter : str, default=""
            Filter for the file extension.
        write_type : {"tiff", "custom"}, default="tiff"
            The data type to save as, includes custom.
        write_extension : str, optional
            If a known `write_type` is selected this argument is ignored. For a custom
            `write_type` an extension to save the data with must be passed.
        write_func : WriteFunc, optional
            If a known `write_type` is selected this argument is ignored. For a custom
            `write_type` a function to save the data must be passed. See notes below.
        write_func_kwargs : dict of {str: any}, optional
            Additional keyword arguments to be passed to the save function.
        prediction_dir : Path | str, default="predictions"
            The path to save the prediction results to. If `prediction_dir` is not
            absolute, the directory will be assumed to be relative to the pre-set
            `work_dir`. If the directory does not exist it will be created.
        **kwargs : Any
            Unused.

        Raises
        ------
        ValueError
            If `write_type` is custom and `write_extension` is None.
        ValueError
            If `write_type` is custom and `write_fun is None.
        ValueError
            If `source` is not `str`, `Path` or `PredictDataModule`
        """
        if write_func_kwargs is None:
            write_func_kwargs = {}

        if Path(prediction_dir).is_absolute():
            write_dir = Path(prediction_dir)
        else:
            write_dir = self.work_dir / prediction_dir
        write_dir.mkdir(exist_ok=True, parents=True)

        # guards for custom types
        if write_type == SupportedData.CUSTOM:
            if write_extension is None:
                raise ValueError(
                    "A `write_extension` must be provided for custom write types."
                )
            if write_func is None:
                raise ValueError(
                    "A `write_func` must be provided for custom write types."
                )
        else:
            write_func = get_write_func(write_type)
            write_extension = SupportedData.get_extension(write_type)

        # extract file names
        source_path: Union[Path, str, NDArray]
        source_data_type: Literal["array", "tiff", "custom"]
        if isinstance(source, PredictDataModule):
            source_path = source.pred_data
            source_data_type = source.data_type
            extension_filter = source.extension_filter
        elif isinstance(source, (str, Path)):
            source_path = source
            source_data_type = data_type or self.cfg.data_config.data_type
            extension_filter = SupportedData.get_extension_pattern(
                SupportedData(source_data_type)
            )
        else:
            raise ValueError(f"Unsupported source type: '{type(source)}'.")

        if source_data_type == "array":
            raise ValueError(
                "Predicting to disk is not supported for input type 'array'."
            )
        assert isinstance(source_path, (Path, str))  # because data_type != "array"
        source_path = Path(source_path)

        file_paths = list_files(source_path, source_data_type, extension_filter)

        # predict and write each file in turn
        for file_path in file_paths:
            # source_path is relative to original source path...
            # should mirror original directory structure
            prediction = self.predict(
                source=file_path,
                batch_size=batch_size,
                tile_size=tile_size,
                tile_overlap=tile_overlap,
                axes=axes,
                data_type=data_type,
                tta_transforms=tta_transforms,
                dataloader_params=dataloader_params,
                read_source_func=read_source_func,
                extension_filter=extension_filter,
                **kwargs,
            )
            # TODO: cast to float16?
            write_data = np.concatenate(prediction)

            # create directory structure and write path
            if not source_path.is_file():
                file_write_dir = write_dir / file_path.parent.relative_to(source_path)
            else:
                file_write_dir = write_dir
            file_write_dir.mkdir(parents=True, exist_ok=True)
            write_path = (file_write_dir / file_path.name).with_suffix(write_extension)

            # write data
            write_func(file_path=write_path, img=write_data)

    def export_to_bmz(
        self,
        path_to_archive: Union[Path, str],
        friendly_model_name: str,
        input_array: NDArray,
        authors: list[dict],
        general_description: str,
        data_description: str,
        covers: Optional[list[Union[Path, str]]] = None,
        channel_names: Optional[list[str]] = None,
        model_version: str = "0.1.0",
    ) -> None:
        """Export the model to the BioImage Model Zoo format.

        This method packages the current weights into a zip file that can be uploaded
        to the BioImage Model Zoo. The archive consists of the model weights, the model
        specifications and various files (inputs, outputs, README, env.yaml etc.).

        `path_to_archive` should point to a file with a ".zip" extension.

        `friendly_model_name` is the name used for the model in the BMZ specs
        and website, it should consist of letters, numbers, dashes, underscores and
        parentheses only.

        Input array must be of the same dimensions as the axes recorded in the
        configuration of the `CAREamist`.

        Parameters
        ----------
        path_to_archive : pathlib.Path or str
            Path in which to save the model, including file name, which should end with
            ".zip".
        friendly_model_name : str
            Name of the model as used in the BMZ specs, it should consist of letters,
            numbers, dashes, underscores and parentheses only.
        input_array : NDArray
            Input array used to validate the model and as example.
        authors : list of dict
            List of authors of the model.
        general_description : str
            General description of the model used in the BMZ metadata.
        data_description : str
            Description of the data the model was trained on.
        covers : list of pathlib.Path or str, default=None
            Paths to the cover images.
        channel_names : list of str, default=None
            Channel names.
        model_version : str, default="0.1.0"
            Version of the model.
        """
        # TODO: add in docs that it is expected that input_array dimensions match
        # those in data_config

        output_patch = self.predict(
            input_array,
            data_type=SupportedData.ARRAY.value,
            tta_transforms=False,
        )
        output = np.concatenate(output_patch, axis=0)
        input_array = reshape_array(input_array, self.cfg.data_config.axes)

        export_to_bmz(
            model=self.model,
            config=self.cfg,
            path_to_archive=path_to_archive,
            model_name=friendly_model_name,
            general_description=general_description,
            data_description=data_description,
            authors=authors,
            input_array=input_array,
            output_array=output,
            covers=covers,
            channel_names=channel_names,
            model_version=model_version,
        )

    def get_losses(self) -> dict[str, list]:
        """Return data that can be used to plot train and validation loss curves.

        Returns
        -------
        dict of str: list
            Dictionary containing the losses for each epoch.
        """
        return read_csv_logger(self.cfg.experiment_name, self.work_dir / "csv_logs")

__init__(source, work_dir=None, callbacks=None) #

__init__(source: Union[Path, str], work_dir: Optional[Union[Path, str]] = None, callbacks: Optional[list[Callback]] = None) -> None
__init__(source: Configuration, work_dir: Optional[Union[Path, str]] = None, callbacks: Optional[list[Callback]] = None) -> None

Initialize CAREamist with a configuration object or a path.

A configuration object can be created using directly by calling Configuration, using the configuration factory or loading a configuration from a yaml file.

Path can contain either a yaml file with parameters, or a saved checkpoint.

If no working directory is provided, the current working directory is used.

Parameters:

Name Type Description Default
source pathlib.Path or str or CAREamics Configuration

Path to a configuration file or a trained model.

required
work_dir str or Path

Path to working directory in which to save checkpoints and logs, by default None.

None
callbacks list of Callback

List of callbacks to use during training and prediction, by default None.

None

Raises:

Type Description
NotImplementedError

If the model is loaded from BioImage Model Zoo.

ValueError

If no hyper parameters are found in the checkpoint.

ValueError

If no data module hyper parameters are found in the checkpoint.

Source code in src/careamics/careamist.py
def __init__(
    self,
    source: Union[Path, str, Configuration],
    work_dir: Optional[Union[Path, str]] = None,
    callbacks: Optional[list[Callback]] = None,
) -> None:
    """
    Initialize CAREamist with a configuration object or a path.

    A configuration object can be created using directly by calling `Configuration`,
    using the configuration factory or loading a configuration from a yaml file.

    Path can contain either a yaml file with parameters, or a saved checkpoint.

    If no working directory is provided, the current working directory is used.

    Parameters
    ----------
    source : pathlib.Path or str or CAREamics Configuration
        Path to a configuration file or a trained model.
    work_dir : str or pathlib.Path, optional
        Path to working directory in which to save checkpoints and logs,
        by default None.
    callbacks : list of Callback, optional
        List of callbacks to use during training and prediction, by default None.

    Raises
    ------
    NotImplementedError
        If the model is loaded from BioImage Model Zoo.
    ValueError
        If no hyper parameters are found in the checkpoint.
    ValueError
        If no data module hyper parameters are found in the checkpoint.
    """
    # select current working directory if work_dir is None
    if work_dir is None:
        self.work_dir = Path.cwd()
        logger.warning(
            f"No working directory provided. Using current working directory: "
            f"{self.work_dir}."
        )
    else:
        self.work_dir = Path(work_dir)

    # configuration object
    if isinstance(source, Configuration):
        self.cfg = source

        # instantiate model
        if isinstance(self.cfg.algorithm_config, UNetBasedAlgorithm):
            self.model = FCNModule(
                algorithm_config=self.cfg.algorithm_config,
            )
        else:
            raise NotImplementedError("Architecture not supported.")

    # path to configuration file or model
    else:
        # TODO: update this check so models can be downloaded directly from BMZ
        source = check_path_exists(source)

        # configuration file
        if source.is_file() and (
            source.suffix == ".yaml" or source.suffix == ".yml"
        ):
            # load configuration
            self.cfg = load_configuration(source)

            # instantiate model
            if isinstance(self.cfg.algorithm_config, UNetBasedAlgorithm):
                self.model = FCNModule(
                    algorithm_config=self.cfg.algorithm_config,
                )  # type: ignore
            else:
                raise NotImplementedError("Architecture not supported.")

        # attempt loading a pre-trained model
        else:
            self.model, self.cfg = load_pretrained(source)

    # define the checkpoint saving callback
    self._define_callbacks(callbacks)

    # instantiate logger
    csv_logger = CSVLogger(
        name=self.cfg.experiment_name,
        save_dir=self.work_dir / "csv_logs",
    )

    if self.cfg.training_config.has_logger():
        if self.cfg.training_config.logger == SupportedLogger.WANDB:
            experiment_logger: LOGGER_TYPES = [
                WandbLogger(
                    name=self.cfg.experiment_name,
                    save_dir=self.work_dir / Path("wandb_logs"),
                ),
                csv_logger,
            ]
        elif self.cfg.training_config.logger == SupportedLogger.TENSORBOARD:
            experiment_logger = [
                TensorBoardLogger(
                    save_dir=self.work_dir / Path("tb_logs"),
                ),
                csv_logger,
            ]
    else:
        experiment_logger = [csv_logger]

    # instantiate trainer
    self.trainer = Trainer(
        max_epochs=self.cfg.training_config.num_epochs,
        precision=self.cfg.training_config.precision,
        max_steps=self.cfg.training_config.max_steps,
        check_val_every_n_epoch=self.cfg.training_config.check_val_every_n_epoch,
        enable_progress_bar=self.cfg.training_config.enable_progress_bar,
        accumulate_grad_batches=self.cfg.training_config.accumulate_grad_batches,
        gradient_clip_val=self.cfg.training_config.gradient_clip_val,
        gradient_clip_algorithm=self.cfg.training_config.gradient_clip_algorithm,
        callbacks=self.callbacks,
        default_root_dir=self.work_dir,
        logger=experiment_logger,
    )

    # place holder for the datamodules
    self.train_datamodule: Optional[TrainDataModule] = None
    self.pred_datamodule: Optional[PredictDataModule] = None

export_to_bmz(path_to_archive, friendly_model_name, input_array, authors, general_description, data_description, covers=None, channel_names=None, model_version='0.1.0') #

Export the model to the BioImage Model Zoo format.

This method packages the current weights into a zip file that can be uploaded to the BioImage Model Zoo. The archive consists of the model weights, the model specifications and various files (inputs, outputs, README, env.yaml etc.).

path_to_archive should point to a file with a ".zip" extension.

friendly_model_name is the name used for the model in the BMZ specs and website, it should consist of letters, numbers, dashes, underscores and parentheses only.

Input array must be of the same dimensions as the axes recorded in the configuration of the CAREamist.

Parameters:

Name Type Description Default
path_to_archive Path or str

Path in which to save the model, including file name, which should end with ".zip".

required
friendly_model_name str

Name of the model as used in the BMZ specs, it should consist of letters, numbers, dashes, underscores and parentheses only.

required
input_array NDArray

Input array used to validate the model and as example.

required
authors list of dict

List of authors of the model.

required
general_description str

General description of the model used in the BMZ metadata.

required
data_description str

Description of the data the model was trained on.

required
covers list of pathlib.Path or str

Paths to the cover images.

None
channel_names list of str

Channel names.

None
model_version str

Version of the model.

"0.1.0"
Source code in src/careamics/careamist.py
def export_to_bmz(
    self,
    path_to_archive: Union[Path, str],
    friendly_model_name: str,
    input_array: NDArray,
    authors: list[dict],
    general_description: str,
    data_description: str,
    covers: Optional[list[Union[Path, str]]] = None,
    channel_names: Optional[list[str]] = None,
    model_version: str = "0.1.0",
) -> None:
    """Export the model to the BioImage Model Zoo format.

    This method packages the current weights into a zip file that can be uploaded
    to the BioImage Model Zoo. The archive consists of the model weights, the model
    specifications and various files (inputs, outputs, README, env.yaml etc.).

    `path_to_archive` should point to a file with a ".zip" extension.

    `friendly_model_name` is the name used for the model in the BMZ specs
    and website, it should consist of letters, numbers, dashes, underscores and
    parentheses only.

    Input array must be of the same dimensions as the axes recorded in the
    configuration of the `CAREamist`.

    Parameters
    ----------
    path_to_archive : pathlib.Path or str
        Path in which to save the model, including file name, which should end with
        ".zip".
    friendly_model_name : str
        Name of the model as used in the BMZ specs, it should consist of letters,
        numbers, dashes, underscores and parentheses only.
    input_array : NDArray
        Input array used to validate the model and as example.
    authors : list of dict
        List of authors of the model.
    general_description : str
        General description of the model used in the BMZ metadata.
    data_description : str
        Description of the data the model was trained on.
    covers : list of pathlib.Path or str, default=None
        Paths to the cover images.
    channel_names : list of str, default=None
        Channel names.
    model_version : str, default="0.1.0"
        Version of the model.
    """
    # TODO: add in docs that it is expected that input_array dimensions match
    # those in data_config

    output_patch = self.predict(
        input_array,
        data_type=SupportedData.ARRAY.value,
        tta_transforms=False,
    )
    output = np.concatenate(output_patch, axis=0)
    input_array = reshape_array(input_array, self.cfg.data_config.axes)

    export_to_bmz(
        model=self.model,
        config=self.cfg,
        path_to_archive=path_to_archive,
        model_name=friendly_model_name,
        general_description=general_description,
        data_description=data_description,
        authors=authors,
        input_array=input_array,
        output_array=output,
        covers=covers,
        channel_names=channel_names,
        model_version=model_version,
    )

get_losses() #

Return data that can be used to plot train and validation loss curves.

Returns:

Type Description
dict of str: list

Dictionary containing the losses for each epoch.

Source code in src/careamics/careamist.py
def get_losses(self) -> dict[str, list]:
    """Return data that can be used to plot train and validation loss curves.

    Returns
    -------
    dict of str: list
        Dictionary containing the losses for each epoch.
    """
    return read_csv_logger(self.cfg.experiment_name, self.work_dir / "csv_logs")

predict(source, *, batch_size=1, tile_size=None, tile_overlap=(48, 48), axes=None, data_type=None, tta_transforms=False, dataloader_params=None, read_source_func=None, extension_filter='', **kwargs) #

predict(source: PredictDataModule) -> Union[list[NDArray], NDArray]
predict(source: Union[Path, str], *, batch_size: int = 1, tile_size: Optional[tuple[int, ...]] = None, tile_overlap: Optional[tuple[int, ...]] = (48, 48), axes: Optional[str] = None, data_type: Optional[Literal['tiff', 'custom']] = None, tta_transforms: bool = False, dataloader_params: Optional[dict] = None, read_source_func: Optional[Callable] = None, extension_filter: str = '') -> Union[list[NDArray], NDArray]
predict(source: NDArray, *, batch_size: int = 1, tile_size: Optional[tuple[int, ...]] = None, tile_overlap: Optional[tuple[int, ...]] = (48, 48), axes: Optional[str] = None, data_type: Optional[Literal['array']] = None, tta_transforms: bool = False, dataloader_params: Optional[dict] = None) -> Union[list[NDArray], NDArray]

Make predictions on the provided data.

Input can be a CAREamicsPredData instance, a path to a data file, or a numpy array.

If data_type, axes and tile_size are not provided, the training configuration parameters will be used, with the patch_size instead of tile_size.

Test-time augmentation (TTA) can be switched on using the tta_transforms parameter. The TTA augmentation applies all possible flip and 90 degrees rotations to the prediction input and averages the predictions. TTA augmentation should not be used if you did not train with these augmentations.

Note that if you are using a UNet model and tiling, the tile size must be divisible in every dimension by 2**d, where d is the depth of the model. This avoids artefacts arising from the broken shift invariance induced by the pooling layers of the UNet. If your image has less dimensions, as it may happen in the Z dimension, consider padding your image.

Parameters:

Name Type Description Default
source (PredictDataModule, Path, str or ndarray)

Data to predict on.

required
batch_size int

Batch size for prediction.

1
tile_size tuple of int

Size of the tiles to use for prediction.

None
tile_overlap tuple of int

Overlap between tiles, can be None.

(48, 48)
axes str

Axes of the input data, by default None.

None
data_type (array, tiff, custom)

Type of the input data.

"array"
tta_transforms bool

Whether to apply test-time augmentation.

True
dataloader_params dict

Parameters to pass to the dataloader.

None
read_source_func Callable

Function to read the source data.

None
extension_filter str

Filter for the file extension.

""
**kwargs Any

Unused.

{}

Returns:

Type Description
list of NDArray or NDArray

Predictions made by the model.

Raises:

Type Description
ValueError

If mean and std are not provided in the configuration.

ValueError

If tile size is not divisible by 2**depth for UNet models.

ValueError

If tile overlap is not specified.

Source code in src/careamics/careamist.py
def predict(
    self,
    source: Union[PredictDataModule, Path, str, NDArray],
    *,
    batch_size: int = 1,
    tile_size: Optional[tuple[int, ...]] = None,
    tile_overlap: Optional[tuple[int, ...]] = (48, 48),
    axes: Optional[str] = None,
    data_type: Optional[Literal["array", "tiff", "custom"]] = None,
    tta_transforms: bool = False,
    dataloader_params: Optional[dict] = None,
    read_source_func: Optional[Callable] = None,
    extension_filter: str = "",
    **kwargs: Any,
) -> Union[list[NDArray], NDArray]:
    """
    Make predictions on the provided data.

    Input can be a CAREamicsPredData instance, a path to a data file, or a numpy
    array.

    If `data_type`, `axes` and `tile_size` are not provided, the training
    configuration parameters will be used, with the `patch_size` instead of
    `tile_size`.

    Test-time augmentation (TTA) can be switched on using the `tta_transforms`
    parameter. The TTA augmentation applies all possible flip and 90 degrees
    rotations to the prediction input and averages the predictions. TTA augmentation
    should not be used if you did not train with these augmentations.

    Note that if you are using a UNet model and tiling, the tile size must be
    divisible in every dimension by 2**d, where d is the depth of the model. This
    avoids artefacts arising from the broken shift invariance induced by the
    pooling layers of the UNet. If your image has less dimensions, as it may
    happen in the Z dimension, consider padding your image.

    Parameters
    ----------
    source : PredictDataModule, pathlib.Path, str or numpy.ndarray
        Data to predict on.
    batch_size : int, default=1
        Batch size for prediction.
    tile_size : tuple of int, optional
        Size of the tiles to use for prediction.
    tile_overlap : tuple of int, default=(48, 48)
        Overlap between tiles, can be None.
    axes : str, optional
        Axes of the input data, by default None.
    data_type : {"array", "tiff", "custom"}, optional
        Type of the input data.
    tta_transforms : bool, default=True
        Whether to apply test-time augmentation.
    dataloader_params : dict, optional
        Parameters to pass to the dataloader.
    read_source_func : Callable, optional
        Function to read the source data.
    extension_filter : str, default=""
        Filter for the file extension.
    **kwargs : Any
        Unused.

    Returns
    -------
    list of NDArray or NDArray
        Predictions made by the model.

    Raises
    ------
    ValueError
        If mean and std are not provided in the configuration.
    ValueError
        If tile size is not divisible by 2**depth for UNet models.
    ValueError
        If tile overlap is not specified.
    """
    if (
        self.cfg.data_config.image_means is None
        or self.cfg.data_config.image_stds is None
    ):
        raise ValueError("Mean and std must be provided in the configuration.")

    # tile size for UNets
    if tile_size is not None:
        model = self.cfg.algorithm_config.model

        if model.architecture == SupportedArchitecture.UNET.value:
            # tile size must be equal to k*2^n, where n is the number of pooling
            # layers (equal to the depth) and k is an integer
            depth = model.depth
            tile_increment = 2**depth

            for i, t in enumerate(tile_size):
                if t % tile_increment != 0:
                    raise ValueError(
                        f"Tile size must be divisible by {tile_increment} along "
                        f"all axes (got {t} for axis {i}). If your image size is "
                        f"smaller along one axis (e.g. Z), consider padding the "
                        f"image."
                    )

        # tile overlaps must be specified
        if tile_overlap is None:
            raise ValueError("Tile overlap must be specified.")

    # create the prediction
    self.pred_datamodule = create_predict_datamodule(
        pred_data=source,
        data_type=data_type or self.cfg.data_config.data_type,
        axes=axes or self.cfg.data_config.axes,
        image_means=self.cfg.data_config.image_means,
        image_stds=self.cfg.data_config.image_stds,
        tile_size=tile_size,
        tile_overlap=tile_overlap,
        batch_size=batch_size or self.cfg.data_config.batch_size,
        tta_transforms=tta_transforms,
        read_source_func=read_source_func,
        extension_filter=extension_filter,
        dataloader_params=dataloader_params,
    )

    # predict
    predictions = self.trainer.predict(
        model=self.model, datamodule=self.pred_datamodule
    )
    return convert_outputs(predictions, self.pred_datamodule.tiled)

predict_to_disk(source, *, batch_size=1, tile_size=None, tile_overlap=(48, 48), axes=None, data_type=None, tta_transforms=False, dataloader_params=None, read_source_func=None, extension_filter='', write_type='tiff', write_extension=None, write_func=None, write_func_kwargs=None, prediction_dir='predictions', **kwargs) #

Make predictions on the provided data and save outputs to files.

The predictions will be saved in a new directory 'predictions' within the set working directory. The directory stucture within the 'predictions' directory will match that of the source directory.

The source must be from files and not arrays. The file names of the predictions will match those of the source. If there is more than one sample within a file, the samples will be saved to seperate files. The file names of samples will have the name of the corresponding source file but with the sample index appended. E.g. If the the source file name is 'images.tiff' then the first sample's prediction will be saved with the file name "image_0.tiff". Input can be a PredictDataModule instance, a path to a data file, or a numpy array.

If data_type, axes and tile_size are not provided, the training configuration parameters will be used, with the patch_size instead of tile_size.

Test-time augmentation (TTA) can be switched on using the tta_transforms parameter. The TTA augmentation applies all possible flip and 90 degrees rotations to the prediction input and averages the predictions. TTA augmentation should not be used if you did not train with these augmentations.

Note that if you are using a UNet model and tiling, the tile size must be divisible in every dimension by 2**d, where d is the depth of the model. This avoids artefacts arising from the broken shift invariance induced by the pooling layers of the UNet. If your image has less dimensions, as it may happen in the Z dimension, consider padding your image.

Parameters:

Name Type Description Default
source (PredictDataModule or Path, str)

Data to predict on.

required
batch_size int

Batch size for prediction.

1
tile_size tuple of int

Size of the tiles to use for prediction.

None
tile_overlap tuple of int

Overlap between tiles.

(48, 48)
axes str

Axes of the input data, by default None.

None
data_type (array, tiff, custom)

Type of the input data.

"array"
tta_transforms bool

Whether to apply test-time augmentation.

True
dataloader_params dict

Parameters to pass to the dataloader.

None
read_source_func Callable

Function to read the source data.

None
extension_filter str

Filter for the file extension.

""
write_type (tiff, custom)

The data type to save as, includes custom.

"tiff"
write_extension str

If a known write_type is selected this argument is ignored. For a custom write_type an extension to save the data with must be passed.

None
write_func WriteFunc

If a known write_type is selected this argument is ignored. For a custom write_type a function to save the data must be passed. See notes below.

None
write_func_kwargs dict of {str: any}

Additional keyword arguments to be passed to the save function.

None
prediction_dir Path | str

The path to save the prediction results to. If prediction_dir is not absolute, the directory will be assumed to be relative to the pre-set work_dir. If the directory does not exist it will be created.

"predictions"
**kwargs Any

Unused.

{}

Raises:

Type Description
ValueError

If write_type is custom and write_extension is None.

ValueError

If write_type is custom and `write_fun is None.

ValueError

If source is not str, Path or PredictDataModule

Source code in src/careamics/careamist.py
def predict_to_disk(
    self,
    source: Union[PredictDataModule, Path, str],
    *,
    batch_size: int = 1,
    tile_size: Optional[tuple[int, ...]] = None,
    tile_overlap: Optional[tuple[int, ...]] = (48, 48),
    axes: Optional[str] = None,
    data_type: Optional[Literal["tiff", "custom"]] = None,
    tta_transforms: bool = False,
    dataloader_params: Optional[dict] = None,
    read_source_func: Optional[Callable] = None,
    extension_filter: str = "",
    write_type: Literal["tiff", "custom"] = "tiff",
    write_extension: Optional[str] = None,
    write_func: Optional[WriteFunc] = None,
    write_func_kwargs: Optional[dict[str, Any]] = None,
    prediction_dir: Union[Path, str] = "predictions",
    **kwargs,
) -> None:
    """
    Make predictions on the provided data and save outputs to files.

    The predictions will be saved in a new directory 'predictions' within the set
    working directory. The directory stucture within the 'predictions' directory
    will match that of the source directory.

    The `source` must be from files and not arrays. The file names of the
    predictions will match those of the source. If there is more than one sample
    within a file, the samples will be saved to seperate files. The file names of
    samples will have the name of the corresponding source file but with the sample
    index appended. E.g. If the the source file name is 'images.tiff' then the first
    sample's prediction will be saved with the file name "image_0.tiff".
    Input can be a PredictDataModule instance, a path to a data file, or a numpy
    array.

    If `data_type`, `axes` and `tile_size` are not provided, the training
    configuration parameters will be used, with the `patch_size` instead of
    `tile_size`.

    Test-time augmentation (TTA) can be switched on using the `tta_transforms`
    parameter. The TTA augmentation applies all possible flip and 90 degrees
    rotations to the prediction input and averages the predictions. TTA augmentation
    should not be used if you did not train with these augmentations.

    Note that if you are using a UNet model and tiling, the tile size must be
    divisible in every dimension by 2**d, where d is the depth of the model. This
    avoids artefacts arising from the broken shift invariance induced by the
    pooling layers of the UNet. If your image has less dimensions, as it may
    happen in the Z dimension, consider padding your image.

    Parameters
    ----------
    source : PredictDataModule or pathlib.Path, str
        Data to predict on.
    batch_size : int, default=1
        Batch size for prediction.
    tile_size : tuple of int, optional
        Size of the tiles to use for prediction.
    tile_overlap : tuple of int, default=(48, 48)
        Overlap between tiles.
    axes : str, optional
        Axes of the input data, by default None.
    data_type : {"array", "tiff", "custom"}, optional
        Type of the input data.
    tta_transforms : bool, default=True
        Whether to apply test-time augmentation.
    dataloader_params : dict, optional
        Parameters to pass to the dataloader.
    read_source_func : Callable, optional
        Function to read the source data.
    extension_filter : str, default=""
        Filter for the file extension.
    write_type : {"tiff", "custom"}, default="tiff"
        The data type to save as, includes custom.
    write_extension : str, optional
        If a known `write_type` is selected this argument is ignored. For a custom
        `write_type` an extension to save the data with must be passed.
    write_func : WriteFunc, optional
        If a known `write_type` is selected this argument is ignored. For a custom
        `write_type` a function to save the data must be passed. See notes below.
    write_func_kwargs : dict of {str: any}, optional
        Additional keyword arguments to be passed to the save function.
    prediction_dir : Path | str, default="predictions"
        The path to save the prediction results to. If `prediction_dir` is not
        absolute, the directory will be assumed to be relative to the pre-set
        `work_dir`. If the directory does not exist it will be created.
    **kwargs : Any
        Unused.

    Raises
    ------
    ValueError
        If `write_type` is custom and `write_extension` is None.
    ValueError
        If `write_type` is custom and `write_fun is None.
    ValueError
        If `source` is not `str`, `Path` or `PredictDataModule`
    """
    if write_func_kwargs is None:
        write_func_kwargs = {}

    if Path(prediction_dir).is_absolute():
        write_dir = Path(prediction_dir)
    else:
        write_dir = self.work_dir / prediction_dir
    write_dir.mkdir(exist_ok=True, parents=True)

    # guards for custom types
    if write_type == SupportedData.CUSTOM:
        if write_extension is None:
            raise ValueError(
                "A `write_extension` must be provided for custom write types."
            )
        if write_func is None:
            raise ValueError(
                "A `write_func` must be provided for custom write types."
            )
    else:
        write_func = get_write_func(write_type)
        write_extension = SupportedData.get_extension(write_type)

    # extract file names
    source_path: Union[Path, str, NDArray]
    source_data_type: Literal["array", "tiff", "custom"]
    if isinstance(source, PredictDataModule):
        source_path = source.pred_data
        source_data_type = source.data_type
        extension_filter = source.extension_filter
    elif isinstance(source, (str, Path)):
        source_path = source
        source_data_type = data_type or self.cfg.data_config.data_type
        extension_filter = SupportedData.get_extension_pattern(
            SupportedData(source_data_type)
        )
    else:
        raise ValueError(f"Unsupported source type: '{type(source)}'.")

    if source_data_type == "array":
        raise ValueError(
            "Predicting to disk is not supported for input type 'array'."
        )
    assert isinstance(source_path, (Path, str))  # because data_type != "array"
    source_path = Path(source_path)

    file_paths = list_files(source_path, source_data_type, extension_filter)

    # predict and write each file in turn
    for file_path in file_paths:
        # source_path is relative to original source path...
        # should mirror original directory structure
        prediction = self.predict(
            source=file_path,
            batch_size=batch_size,
            tile_size=tile_size,
            tile_overlap=tile_overlap,
            axes=axes,
            data_type=data_type,
            tta_transforms=tta_transforms,
            dataloader_params=dataloader_params,
            read_source_func=read_source_func,
            extension_filter=extension_filter,
            **kwargs,
        )
        # TODO: cast to float16?
        write_data = np.concatenate(prediction)

        # create directory structure and write path
        if not source_path.is_file():
            file_write_dir = write_dir / file_path.parent.relative_to(source_path)
        else:
            file_write_dir = write_dir
        file_write_dir.mkdir(parents=True, exist_ok=True)
        write_path = (file_write_dir / file_path.name).with_suffix(write_extension)

        # write data
        write_func(file_path=write_path, img=write_data)

stop_training() #

Stop the training loop.

Source code in src/careamics/careamist.py
def stop_training(self) -> None:
    """Stop the training loop."""
    # raise stop training flag
    self.trainer.should_stop = True
    self.trainer.limit_val_batches = 0  # skip  validation

train(*, datamodule=None, train_source=None, val_source=None, train_target=None, val_target=None, use_in_memory=True, val_percentage=0.1, val_minimum_split=1) #

Train the model on the provided data.

If a datamodule is provided, then training will be performed using it. Alternatively, the training data can be provided as arrays or paths.

If use_in_memory is set to True, the source provided as Path or str will be loaded in memory if it fits. Otherwise, training will be performed by loading patches from the files one by one. Training on arrays is always performed in memory.

If no validation source is provided, then the validation is extracted from the training data using val_percentage and val_minimum_split. In the case of data provided as Path or str, the percentage and minimum number are applied to the number of files. For arrays, it is the number of patches.

Parameters:

Name Type Description Default
datamodule TrainDataModule

Datamodule to train on, by default None.

None
train_source Path or str or NDArray

Train source, if no datamodule is provided, by default None.

None
val_source Path or str or NDArray

Validation source, if no datamodule is provided, by default None.

None
train_target Path or str or NDArray

Train target source, if no datamodule is provided, by default None.

None
val_target Path or str or NDArray

Validation target source, if no datamodule is provided, by default None.

None
use_in_memory bool

Use in memory dataset if possible, by default True.

True
val_percentage float

Percentage of validation extracted from training data, by default 0.1.

0.1
val_minimum_split int

Minimum number of validation (patch or file) extracted from training data, by default 1.

1

Raises:

Type Description
ValueError

If both datamodule and train_source are provided.

ValueError

If sources are not of the same type (e.g. train is an array and val is a Path).

ValueError

If the training target is provided to N2V.

ValueError

If neither a datamodule nor a source is provided.

Source code in src/careamics/careamist.py
def train(
    self,
    *,
    datamodule: Optional[TrainDataModule] = None,
    train_source: Optional[Union[Path, str, NDArray]] = None,
    val_source: Optional[Union[Path, str, NDArray]] = None,
    train_target: Optional[Union[Path, str, NDArray]] = None,
    val_target: Optional[Union[Path, str, NDArray]] = None,
    use_in_memory: bool = True,
    val_percentage: float = 0.1,
    val_minimum_split: int = 1,
) -> None:
    """
    Train the model on the provided data.

    If a datamodule is provided, then training will be performed using it.
    Alternatively, the training data can be provided as arrays or paths.

    If `use_in_memory` is set to True, the source provided as Path or str will be
    loaded in memory if it fits. Otherwise, training will be performed by loading
    patches from the files one by one. Training on arrays is always performed
    in memory.

    If no validation source is provided, then the validation is extracted from
    the training data using `val_percentage` and `val_minimum_split`. In the case
    of data provided as Path or str, the percentage and minimum number are applied
    to the number of files. For arrays, it is the number of patches.

    Parameters
    ----------
    datamodule : TrainDataModule, optional
        Datamodule to train on, by default None.
    train_source : pathlib.Path or str or NDArray, optional
        Train source, if no datamodule is provided, by default None.
    val_source : pathlib.Path or str or NDArray, optional
        Validation source, if no datamodule is provided, by default None.
    train_target : pathlib.Path or str or NDArray, optional
        Train target source, if no datamodule is provided, by default None.
    val_target : pathlib.Path or str or NDArray, optional
        Validation target source, if no datamodule is provided, by default None.
    use_in_memory : bool, optional
        Use in memory dataset if possible, by default True.
    val_percentage : float, optional
        Percentage of validation extracted from training data, by default 0.1.
    val_minimum_split : int, optional
        Minimum number of validation (patch or file) extracted from training data,
        by default 1.

    Raises
    ------
    ValueError
        If both `datamodule` and `train_source` are provided.
    ValueError
        If sources are not of the same type (e.g. train is an array and val is
        a Path).
    ValueError
        If the training target is provided to N2V.
    ValueError
        If neither a datamodule nor a source is provided.
    """
    if datamodule is not None and train_source is not None:
        raise ValueError(
            "Only one of `datamodule` and `train_source` can be provided."
        )

    # check that inputs are the same type
    source_types = {
        type(s)
        for s in (train_source, val_source, train_target, val_target)
        if s is not None
    }
    if len(source_types) > 1:
        raise ValueError("All sources should be of the same type.")

    # train
    if datamodule is not None:
        self._train_on_datamodule(datamodule=datamodule)

    else:
        # raise error if target is provided to N2V
        if self.cfg.algorithm_config.algorithm == SupportedAlgorithm.N2V.value:
            if train_target is not None:
                raise ValueError(
                    "Training target not compatible with N2V training."
                )

        # dispatch the training
        if isinstance(train_source, np.ndarray):
            # mypy checks
            assert isinstance(val_source, np.ndarray) or val_source is None
            assert isinstance(train_target, np.ndarray) or train_target is None
            assert isinstance(val_target, np.ndarray) or val_target is None

            self._train_on_array(
                train_source,
                val_source,
                train_target,
                val_target,
                val_percentage,
                val_minimum_split,
            )

        elif isinstance(train_source, Path) or isinstance(train_source, str):
            # mypy checks
            assert (
                isinstance(val_source, Path)
                or isinstance(val_source, str)
                or val_source is None
            )
            assert (
                isinstance(train_target, Path)
                or isinstance(train_target, str)
                or train_target is None
            )
            assert (
                isinstance(val_target, Path)
                or isinstance(val_target, str)
                or val_target is None
            )

            self._train_on_path(
                train_source,
                val_source,
                train_target,
                val_target,
                use_in_memory,
                val_percentage,
                val_minimum_split,
            )

        else:
            raise ValueError(
                f"Invalid input, expected a str, Path, array or TrainDataModule "
                f"instance (got {type(train_source)})."
            )