vae_algorithm_model
VAE-based algorithm Pydantic model.
VAEBasedAlgorithm
#
Bases: BaseModel
VAE-based algorithm configuration.
TODO#
Examples:
TODO add once finalized#
Source code in src/careamics/config/algorithms/vae_algorithm_model.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
optimizer = OptimizerModel()
class-attribute
instance-attribute
#
Optimizer to use, defined in SupportedOptimizer.
__str__()
#
Pretty string representing the configuration.
Returns:
Type | Description |
---|---|
str | Pretty string. |
algorithm_cross_validation()
#
Validate the algorithm model based on algorithm
.
Returns:
Type | Description |
---|---|
Self | The validated model. |
Source code in src/careamics/config/algorithms/vae_algorithm_model.py
get_compatible_algorithms()
classmethod
#
Get the list of compatible algorithms.
Returns:
Type | Description |
---|---|
list of str | List of compatible algorithms. |
Source code in src/careamics/config/algorithms/vae_algorithm_model.py
output_channels_validation()
#
Validate the consistency between number of out channels and noise models.
Returns:
Type | Description |
---|---|
Self | The validated model. |
Source code in src/careamics/config/algorithms/vae_algorithm_model.py
predict_logvar_validation()
#
Validate the consistency of predict_logvar
throughout the model.
Returns:
Type | Description |
---|---|
Self | The validated model. |