configuration_factories
Convenience functions to create configurations for training and inference.
algorithm_factory(algorithm)
#
Create an algorithm model for training CAREamics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
algorithm | dict | Algorithm dictionary. | required |
Returns:
Type | Description |
---|---|
N2VAlgorithm or N2NAlgorithm or CAREAlgorithm | Algorithm model for training CAREamics. |
Source code in src/careamics/config/configuration_factories.py
create_care_configuration(experiment_name, data_type, axes, patch_size, batch_size, num_epochs=100, num_steps=None, augmentations=None, independent_channels=True, loss='mae', n_channels_in=None, n_channels_out=None, logger='none', trainer_params=None, model_params=None, optimizer='Adam', optimizer_params=None, lr_scheduler='ReduceLROnPlateau', lr_scheduler_params=None, train_dataloader_params=None, val_dataloader_params=None, checkpoint_params=None)
#
Create a configuration for training CARE.
If "Z" is present in axes
, then path_size
must be a list of length 3, otherwise 2.
If "C" is present in axes
, then you need to set n_channels_in
to the number of channels. Likewise, if you set the number of channels, then "C" must be present in axes
.
To set the number of output channels, use the n_channels_out
parameter. If it is not specified, it will be assumed to be equal to n_channels_in
.
By default, all channels are trained together. To train all channels independently, set independent_channels
to True.
By setting augmentations
to None
, the default transformations (flip in X and Y, rotations by 90 degrees in the XY plane) are applied. Rather than the default transforms, a list of transforms can be passed to the augmentations
parameter. To disable the transforms, simply pass an empty list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_name | str | Name of the experiment. | required |
data_type | Literal['array', 'tiff', 'czi', 'custom'] | Type of the data. | required |
axes | str | Axes of the data (e.g. SYX). | required |
patch_size | List[int] | Size of the patches along the spatial dimensions (e.g. [64, 64]). | required |
batch_size | int | Batch size. | required |
num_epochs | int | Number of epochs to train for. If provided, this will be added to trainer_params. | 100 |
num_steps | int | Number of batches in 1 epoch. If provided, this will be added to trainer_params. Translates to | None |
augmentations | list of transforms | List of transforms to apply, either both or one of XYFlipModel and XYRandomRotate90Model. By default, it applies both XYFlip (on X and Y) and XYRandomRotate90 (in XY) to the images. | None |
independent_channels | bool | Whether to train all channels independently, by default False. | True |
loss | Literal['mae', 'mse'] | Loss function to use. | "mae" |
n_channels_in | int or None | Number of channels in. | None |
n_channels_out | int or None | Number of channels out. | None |
logger | Literal['wandb', 'tensorboard', 'none'] | Logger to use. | "none" |
trainer_params | dict | Parameters for the trainer class, see PyTorch Lightning documentation. | None |
model_params | dict | UNetModel parameters. | None |
optimizer | Literal['Adam', 'Adamax', 'SGD'] | Optimizer to use. | "Adam" |
optimizer_params | dict | Parameters for the optimizer, see PyTorch documentation for more details. | None |
lr_scheduler | Literal['ReduceLROnPlateau', 'StepLR'] | Learning rate scheduler to use. | "ReduceLROnPlateau" |
lr_scheduler_params | dict | Parameters for the learning rate scheduler, see PyTorch documentation for more details. | None |
train_dataloader_params | dict | Parameters for the training dataloader, see the PyTorch docs for | None |
val_dataloader_params | dict | Parameters for the validation dataloader, see PyTorch the docs for | None |
checkpoint_params | dict | Parameters for the checkpoint callback, see PyTorch Lightning documentation ( | None |
Returns:
Type | Description |
---|---|
Configuration | Configuration for training CARE. |
Examples:
Minimum example:
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100
... )
You can also limit the number of batches per epoch:
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_steps=100 # limit to 100 batches per epoch
... )
To disable transforms, simply set augmentations
to an empty list:
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[]
... )
A list of transforms can be passed to the augmentations
parameter to replace the default augmentations:
>>> from careamics.config.transformations import XYFlipModel
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[
... # No rotation and only Y flipping
... XYFlipModel(flip_x = False, flip_y = True)
... ]
... )
If you are training multiple channels they will be trained independently by default, you simply need to specify the number of channels input (and optionally, the number of channels output):
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YXC", # channels must be in the axes
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels_in=3, # number of input channels
... n_channels_out=1 # if applicable
... )
If instead you want to train multiple channels together, you need to turn off the independent_channels
parameter:
>>> config = create_care_configuration(
... experiment_name="care_experiment",
... data_type="array",
... axes="YXC", # channels must be in the axes
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... independent_channels=False,
... n_channels_in=3,
... n_channels_out=1 # if applicable
... )
If you would like to train on CZI files, use "czi"
as data_type
and "SCYX"
as axes
for 2-D or "SCZYX"
for 3-D denoising. Note that "SCYX"
can also be used for 3-D data but spatial context along the Z dimension will then not be taken into account.
>>> config_2d = create_care_configuration(
... experiment_name="care_experiment",
... data_type="czi",
... axes="SCYX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels_in=1,
... )
>>> config_3d = create_care_configuration(
... experiment_name="care_experiment",
... data_type="czi",
... axes="SCZYX",
... patch_size=[16, 64, 64],
... batch_size=16,
... num_epochs=100,
... n_channels_in=1,
... )
Source code in src/careamics/config/configuration_factories.py
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
|
create_hdn_configuration(experiment_name, data_type, axes, patch_size, batch_size, num_epochs=100, num_steps=None, encoder_conv_strides=(2, 2), decoder_conv_strides=(2, 2), multiscale_count=1, z_dims=(128, 128), output_channels=1, encoder_n_filters=32, decoder_n_filters=32, encoder_dropout=0.0, decoder_dropout=0.0, nonlinearity='ReLU', analytical_kl=False, predict_logvar=None, logvar_lowerbound=None, logger='none', trainer_params=None, augmentations=None, train_dataloader_params=None, val_dataloader_params=None)
#
Create a configuration for training HDN.
If "Z" is present in axes
, then path_size
must be a list of length 3, otherwise 2.
If "C" is present in axes
, then you need to set n_channels_in
to the number of channels. Likewise, if you set the number of channels, then "C" must be present in axes
.
To set the number of output channels, use the n_channels_out
parameter. If it is not specified, it will be assumed to be equal to n_channels_in
.
By default, all channels are trained independently. To train all channels together, set independent_channels
to False.
By setting augmentations
to None
, the default transformations (flip in X and Y, rotations by 90 degrees in the XY plane) are applied. Rather than the default transforms, a list of transforms can be passed to the augmentations
parameter. To disable the transforms, simply pass an empty list.
TODO revisit the necessity of model_params#
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_name | str | Name of the experiment. | required |
data_type | Literal['array', 'tiff', 'custom'] | Type of the data. | required |
axes | str | Axes of the data (e.g. SYX). | required |
patch_size | List[int] | Size of the patches along the spatial dimensions (e.g. [64, 64]). | required |
batch_size | int | Batch size. | required |
num_epochs | int | Number of epochs to train for. If provided, this will be added to trainer_params. | 100 |
num_steps | int | Number of batches in 1 epoch. If provided, this will be added to trainer_params. Translates to | None |
encoder_conv_strides | tuple[int, ...] | Strides for the encoder convolutional layers, by default (2, 2). | (2, 2) |
decoder_conv_strides | tuple[int, ...] | Strides for the decoder convolutional layers, by default (2, 2). | (2, 2) |
multiscale_count | int | Number of scales in the multiscale architecture, by default 1. | 1 |
z_dims | tuple[int, ...] | Dimensions of the latent space, by default (128, 128). | (128, 128) |
output_channels | int | Number of output channels, by default 1. | 1 |
encoder_n_filters | int | Number of filters in the encoder, by default 32. | 32 |
decoder_n_filters | int | Number of filters in the decoder, by default 32. | 32 |
encoder_dropout | float | Dropout rate for the encoder, by default 0.0. | 0.0 |
decoder_dropout | float | Dropout rate for the decoder, by default 0.0. | 0.0 |
nonlinearity | Literal | Nonlinearity function to use, by default "ReLU". | 'ReLU' |
analytical_kl | bool | Whether to use analytical KL divergence, by default False. | False |
predict_logvar | Literal[None, 'pixelwise'] | Type of log variance prediction, by default None. | None |
logvar_lowerbound | Union[float, None] | Lower bound for the log variance, by default None. | None |
logger | Literal['wandb', 'tensorboard', 'none'] | Logger to use for training, by default "none". | 'none' |
trainer_params | dict | Parameters for the trainer class, see PyTorch Lightning documentation. | None |
augmentations | Optional[list[Union[XYFlipModel, XYRandomRotate90Model]]] | List of augmentations to apply, by default None. | None |
train_dataloader_params | Optional[dict[str, Any]] | Parameters for the training dataloader, by default None. | None |
val_dataloader_params | Optional[dict[str, Any]] | Parameters for the validation dataloader, by default None. | None |
Returns:
Type | Description |
---|---|
Configuration | The configuration object for training HDN. |
Examples:
Minimum example:
>>> config = create_hdn_configuration(
... experiment_name="hdn_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100
... )
You can also limit the number of batches per epoch:
>>> config = create_hdn_configuration(
... experiment_name="hdn_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_steps=100 # limit to 100 batches per epoch
... )
Source code in src/careamics/config/configuration_factories.py
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 |
|
create_microsplit_configuration(experiment_name, data_type, axes, patch_size, batch_size, num_epochs=100, num_steps=None, encoder_conv_strides=(2, 2), decoder_conv_strides=(2, 2), multiscale_count=3, grid_size=32, z_dims=(128, 128), output_channels=1, encoder_n_filters=32, decoder_n_filters=32, encoder_dropout=0.0, decoder_dropout=0.0, nonlinearity='ReLU', analytical_kl=False, predict_logvar='pixelwise', logvar_lowerbound=None, logger='none', trainer_params=None, augmentations=None, nm_paths=None, data_stats=None, train_dataloader_params=None, val_dataloader_params=None)
#
Create a configuration for training MicroSplit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_name | str | Name of the experiment. | required |
data_type | Literal['array', 'tiff', 'custom'] | Type of the data. | required |
axes | str | Axes of the data (e.g. SYX). | required |
patch_size | Sequence[int] | Size of the patches along the spatial dimensions (e.g. [64, 64]). | required |
batch_size | int | Batch size. | required |
num_epochs | int | Number of epochs to train for. If provided, this will be added to trainer_params. | 100 |
num_steps | int | Number of batches in 1 epoch. If provided, this will be added to trainer_params. Translates to | None |
encoder_conv_strides | tuple[int, ...] | Strides for the encoder convolutional layers, by default (2, 2). | (2, 2) |
decoder_conv_strides | tuple[int, ...] | Strides for the decoder convolutional layers, by default (2, 2). | (2, 2) |
multiscale_count | int | Number of multiscale levels, by default 1. | 3 |
grid_size | int | Size of the grid for the lateral context, by default 32. | 32 |
z_dims | tuple[int, ...] | List of latent dimensions for each hierarchy level in the LVAE, by default (128, 128). | (128, 128) |
output_channels | int | Number of output channels for the model, by default 1. | 1 |
encoder_n_filters | int | Number of filters in the encoder, by default 32. | 32 |
decoder_n_filters | int | Number of filters in the decoder, by default 32. | 32 |
encoder_dropout | float | Dropout rate for the encoder, by default 0.0. | 0.0 |
decoder_dropout | float | Dropout rate for the decoder, by default 0.0. | 0.0 |
nonlinearity | Literal | Nonlinearity to use in the model, by default "ReLU". | 'ReLU' |
analytical_kl | bool | Whether to use analytical KL divergence, by default False. | False |
predict_logvar | Literal['pixelwise'] | None | Type of log-variance prediction, by default None. | 'pixelwise' |
logvar_lowerbound | Union[float, None] | Lower bound for the log variance, by default None. | None |
logger | Literal['wandb', 'tensorboard', 'none'] | Logger to use for training, by default "none". | 'none' |
trainer_params | dict | Parameters for the trainer class, see PyTorch Lightning documentation. | None |
augmentations | list[Union[XYFlipModel, XYRandomRotate90Model]] | None | List of augmentations to apply, by default None. | None |
nm_paths | list[str] | None | Paths to the noise model files, by default None. | None |
data_stats | tuple[float, float] | None | Data statistics (mean, std), by default None. | None |
train_dataloader_params | dict[str, Any] | None | Parameters for the training dataloader, by default None. | None |
val_dataloader_params | dict[str, Any] | None | Parameters for the validation dataloader, by default None. | None |
Returns:
Type | Description |
---|---|
Configuration | A configuration object for the microsplit algorithm. |
Examples:
Minimum example:
>>> config = create_microsplit_configuration(#
... experiment_name="microsplit_experiment",#
... data_type="array",#
... axes="YX",#
... patch_size=[64, 64],#
... batch_size=32,#
... num_epochs=100#
... )#
You can also limit the number of batches per epoch:#
>>> config = create_microsplit_configuration(#
... experiment_name="microsplit_experiment",#
... data_type="array",#
... axes="YX",#
... patch_size=[64, 64],#
... batch_size=32,#
... num_steps=100 # limit to 100 batches per epoch#
... )#
Source code in src/careamics/config/configuration_factories.py
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 |
|
create_n2n_configuration(experiment_name, data_type, axes, patch_size, batch_size, num_epochs=100, num_steps=None, augmentations=None, independent_channels=True, loss='mae', n_channels_in=None, n_channels_out=None, logger='none', trainer_params=None, model_params=None, optimizer='Adam', optimizer_params=None, lr_scheduler='ReduceLROnPlateau', lr_scheduler_params=None, train_dataloader_params=None, val_dataloader_params=None, checkpoint_params=None)
#
Create a configuration for training Noise2Noise.
If "Z" is present in axes
, then path_size
must be a list of length 3, otherwise 2.
If "C" is present in axes
, then you need to set n_channels_in
to the number of channels. Likewise, if you set the number of channels, then "C" must be present in axes
.
To set the number of output channels, use the n_channels_out
parameter. If it is not specified, it will be assumed to be equal to n_channels_in
.
By default, all channels are trained together. To train all channels independently, set independent_channels
to True.
By setting augmentations
to None
, the default transformations (flip in X and Y, rotations by 90 degrees in the XY plane) are applied. Rather than the default transforms, a list of transforms can be passed to the augmentations
parameter. To disable the transforms, simply pass an empty list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_name | str | Name of the experiment. | required |
data_type | Literal['array', 'tiff', 'czi', 'custom'] | Type of the data. | required |
axes | str | Axes of the data (e.g. SYX). | required |
patch_size | List[int] | Size of the patches along the spatial dimensions (e.g. [64, 64]). | required |
batch_size | int | Batch size. | required |
num_epochs | int | Number of epochs to train for. If provided, this will be added to trainer_params. | 100 |
num_steps | int | Number of batches in 1 epoch. If provided, this will be added to trainer_params. Translates to | None |
augmentations | list of transforms | List of transforms to apply, either both or one of XYFlipModel and XYRandomRotate90Model. By default, it applies both XYFlip (on X and Y) and XYRandomRotate90 (in XY) to the images. | None |
independent_channels | bool | Whether to train all channels independently, by default False. | True |
loss | Literal['mae', 'mse'] | Loss function to use, by default "mae". | 'mae' |
n_channels_in | int or None | Number of channels in. | None |
n_channels_out | int or None | Number of channels out. | None |
logger | Literal['wandb', 'tensorboard', 'none'] | Logger to use, by default "none". | 'none' |
trainer_params | dict | Parameters for the trainer class, see PyTorch Lightning documentation. | None |
model_params | dict | UNetModel parameters. | None |
optimizer | Literal['Adam', 'Adamax', 'SGD'] | Optimizer to use. | "Adam" |
optimizer_params | dict | Parameters for the optimizer, see PyTorch documentation for more details. | None |
lr_scheduler | Literal['ReduceLROnPlateau', 'StepLR'] | Learning rate scheduler to use. | "ReduceLROnPlateau" |
lr_scheduler_params | dict | Parameters for the learning rate scheduler, see PyTorch documentation for more details. | None |
train_dataloader_params | dict | Parameters for the training dataloader, see the PyTorch docs for | None |
val_dataloader_params | dict | Parameters for the validation dataloader, see PyTorch the docs for | None |
checkpoint_params | dict | Parameters for the checkpoint callback, see PyTorch Lightning documentation ( | None |
Returns:
Type | Description |
---|---|
Configuration | Configuration for training Noise2Noise. |
Examples:
Minimum example:
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100
... )
You can also limit the number of batches per epoch:
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_steps=100 # limit to 100 batches per epoch
... )
To disable transforms, simply set augmentations
to an empty list:
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[]
... )
A list of transforms can be passed to the augmentations
parameter:
>>> from careamics.config.transformations import XYFlipModel
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[
... # No rotation and only Y flipping
... XYFlipModel(flip_x = False, flip_y = True)
... ]
... )
If you are training multiple channels they will be trained independently by default, you simply need to specify the number of channels input (and optionally, the number of channels output):
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YXC", # channels must be in the axes
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels_in=3, # number of input channels
... n_channels_out=1 # if applicable
... )
If instead you want to train multiple channels together, you need to turn off the independent_channels
parameter:
>>> config = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="array",
... axes="YXC", # channels must be in the axes
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... independent_channels=False,
... n_channels_in=3,
... n_channels_out=1 # if applicable
... )
If you would like to train on CZI files, use "czi"
as data_type
and "SCYX"
as axes
for 2-D or "SCZYX"
for 3-D denoising. Note that "SCYX"
can also be used for 3-D data but spatial context along the Z dimension will then not be taken into account.
>>> config_2d = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="czi",
... axes="SCYX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels_in=1,
... )
>>> config_3d = create_n2n_configuration(
... experiment_name="n2n_experiment",
... data_type="czi",
... axes="SCZYX",
... patch_size=[16, 64, 64],
... batch_size=16,
... num_epochs=100,
... n_channels_in=1,
... )
Source code in src/careamics/config/configuration_factories.py
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
|
create_n2v_configuration(experiment_name, data_type, axes, patch_size, batch_size, num_epochs=100, num_steps=None, augmentations=None, independent_channels=True, use_n2v2=False, n_channels=None, roi_size=11, masked_pixel_percentage=0.2, struct_n2v_axis='none', struct_n2v_span=5, trainer_params=None, logger='none', model_params=None, optimizer='Adam', optimizer_params=None, lr_scheduler='ReduceLROnPlateau', lr_scheduler_params=None, train_dataloader_params=None, val_dataloader_params=None, checkpoint_params=None)
#
Create a configuration for training Noise2Void.
N2V uses a UNet model to denoise images in a self-supervised manner. To use its variants structN2V and N2V2, set the struct_n2v_axis
and struct_n2v_span
(structN2V) parameters, or set use_n2v2
to True (N2V2).
N2V2 modifies the UNet architecture by adding blur pool layers and removes the skip connections, thus removing checkboard artefacts. StructN2V is used when vertical or horizontal correlations are present in the noise; it applies an additional mask to the manipulated pixel neighbors.
If "Z" is present in axes
, then path_size
must be a list of length 3, otherwise 2.
If "C" is present in axes
, then you need to set n_channels
to the number of channels.
By default, all channels are trained independently. To train all channels together, set independent_channels
to False.
By default, the transformations applied are a random flip along X or Y, and a random 90 degrees rotation in the XY plane. Normalization is always applied, as well as the N2V manipulation.
By setting augmentations
to None
, the default transformations (flip in X and Y, rotations by 90 degrees in the XY plane) are applied. Rather than the default transforms, a list of transforms can be passed to the augmentations
parameter. To disable the transforms, simply pass an empty list.
The roi_size
parameter specifies the size of the area around each pixel that will be manipulated by N2V. The masked_pixel_percentage
parameter specifies how many pixels per patch will be manipulated.
The parameters of the UNet can be specified in the model_params
(passed as a parameter-value dictionary). Note that use_n2v2
and 'n_channels' override the corresponding parameters passed in model_params
.
If you pass "horizontal" or "vertical" to struct_n2v_axis
, then structN2V mask will be applied to each manipulated pixel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
experiment_name | str | Name of the experiment. | required |
data_type | Literal['array', 'tiff', 'czi', 'custom'] | Type of the data. | required |
axes | str | Axes of the data (e.g. SYX). | required |
patch_size | List[int] | Size of the patches along the spatial dimensions (e.g. [64, 64]). | required |
batch_size | int | Batch size. | required |
num_epochs | int | Number of epochs to train for. If provided, this will be added to trainer_params. | 100 |
num_steps | int | Number of batches in 1 epoch. If provided, this will be added to trainer_params. Translates to | None |
augmentations | list of transforms | List of transforms to apply, either both or one of XYFlipModel and XYRandomRotate90Model. By default, it applies both XYFlip (on X and Y) and XYRandomRotate90 (in XY) to the images. | None |
independent_channels | bool | Whether to train all channels together, by default True. | True |
use_n2v2 | bool | Whether to use N2V2, by default False. | False |
n_channels | int or None | Number of channels (in and out). | None |
roi_size | int | N2V pixel manipulation area, by default 11. | 11 |
masked_pixel_percentage | float | Percentage of pixels masked in each patch, by default 0.2. | 0.2 |
struct_n2v_axis | Literal['horizontal', 'vertical', 'none'] | Axis along which to apply structN2V mask, by default "none". | 'none' |
struct_n2v_span | int | Span of the structN2V mask, by default 5. | 5 |
trainer_params | dict | Parameters for the trainer, see the relevant documentation. | None |
logger | Literal['wandb', 'tensorboard', 'none'] | Logger to use, by default "none". | 'none' |
model_params | dict | UNetModel parameters. | None |
optimizer | Literal['Adam', 'Adamax', 'SGD'] | Optimizer to use. | "Adam" |
optimizer_params | dict | Parameters for the optimizer, see PyTorch documentation for more details. | None |
lr_scheduler | Literal['ReduceLROnPlateau', 'StepLR'] | Learning rate scheduler to use. | "ReduceLROnPlateau" |
lr_scheduler_params | dict | Parameters for the learning rate scheduler, see PyTorch documentation for more details. | None |
train_dataloader_params | dict | Parameters for the training dataloader, see the PyTorch docs for | None |
val_dataloader_params | dict | Parameters for the validation dataloader, see PyTorch the docs for | None |
checkpoint_params | dict | Parameters for the checkpoint callback, see PyTorch Lightning documentation ( | None |
Returns:
Type | Description |
---|---|
Configuration | Configuration for training N2V. |
Examples:
Minimum example:
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100
... )
You can also limit the number of batches per epoch:
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_steps=100 # limit to 100 batches per epoch
... )
To disable transforms, simply set augmentations
to an empty list:
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[]
... )
A list of transforms can be passed to the augmentations
parameter:
>>> from careamics.config.transformations import XYFlipModel
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... augmentations=[
... # No rotation and only Y flipping
... XYFlipModel(flip_x = False, flip_y = True)
... ]
... )
To use N2V2, simply pass the use_n2v2
parameter:
>>> config = create_n2v_configuration(
... experiment_name="n2v2_experiment",
... data_type="tiff",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... use_n2v2=True
... )
For structN2V, there are two parameters to set, struct_n2v_axis
and struct_n2v_span
:
>>> config = create_n2v_configuration(
... experiment_name="structn2v_experiment",
... data_type="tiff",
... axes="YX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... struct_n2v_axis="horizontal",
... struct_n2v_span=7
... )
If you are training multiple channels they will be trained independently by default, you simply need to specify the number of channels:
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YXC",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels=3
... )
If instead you want to train multiple channels together, you need to turn off the independent_channels
parameter:
>>> config = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="array",
... axes="YXC",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... independent_channels=False,
... n_channels=3
... )
If you would like to train on CZI files, use "czi"
as data_type
and "SCYX"
as axes
for 2-D or "SCZYX"
for 3-D denoising. Note that "SCYX"
can also be used for 3-D data but spatial context along the Z dimension will then not be taken into account.
>>> config_2d = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="czi",
... axes="SCYX",
... patch_size=[64, 64],
... batch_size=32,
... num_epochs=100,
... n_channels=1,
... )
>>> config_3d = create_n2v_configuration(
... experiment_name="n2v_experiment",
... data_type="czi",
... axes="SCZYX",
... patch_size=[16, 64, 64],
... batch_size=16,
... num_epochs=100,
... n_channels=1,
... )
Source code in src/careamics/config/configuration_factories.py
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 |
|
get_likelihood_config(loss_type, predict_logvar=None, logvar_lowerbound=-5.0, nm_paths=None, data_stats=None)
#
Get the likelihood configuration for split models.
Returns a tuple containing the following optional entries: - GaussianLikelihoodConfig: Gaussian likelihood configuration for musplit losses - MultiChannelNMConfig: Multi-channel noise model configuration for denoisplit losses - NMLikelihoodConfig: Noise model likelihood configuration for denoisplit losses
Parameters:
Name | Type | Description | Default |
---|---|---|---|
loss_type | Literal['musplit', 'denoisplit', 'denoisplit_musplit'] | The type of loss function to use. | required |
predict_logvar | Literal['pixelwise'] | None | Type of log variance prediction, by default None. Required when loss_type is "musplit" or "denoisplit_musplit". | None |
logvar_lowerbound | float | None | Lower bound for the log variance, by default -5.0. Used when loss_type is "musplit" or "denoisplit_musplit". | -5.0 |
nm_paths | list[str] | None | Paths to the noise model files, by default None. Required when loss_type is "denoisplit" or "denoisplit_musplit". | None |
data_stats | tuple[float, float] | None | Data statistics (mean, std), by default None. Required when loss_type is "denoisplit" or "denoisplit_musplit". | None |
Returns:
Type | Description |
---|---|
GaussianLikelihoodConfig or None | Configuration for the Gaussian likelihood model. |
MultiChannelNMConfig or None | Configuration for the multi-channel noise model. |
NMLikelihoodConfig or None | Configuration for the noise model likelihood. |
Raises:
Type | Description |
---|---|
ValueError | If required parameters are missing for the specified loss_type. |
Source code in src/careamics/config/configuration_factories.py
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 |
|