data_model
Data configuration.
Float = Annotated[float, PlainSerializer(np_float_to_scientific_str, return_type=str)]
module-attribute
#
Annotated float type, used to serialize floats to strings.
DataConfig
#
Bases: BaseModel
Data configuration.
If std is specified, mean must be specified as well. Note that setting the std first and then the mean (if they were both None
before) will raise a validation error. Prefer instead set_mean_and_std
to set both at once. Means and stds are expected to be lists of floats, one for each channel. For supervised tasks, the mean and std of the target could be different from the input data.
All supported transforms are defined in the SupportedTransform enum.
Examples:
Minimum example:
>>> data = DataConfig(
... data_type="array", # defined in SupportedData
... patch_size=[128, 128],
... batch_size=4,
... axes="YX"
... )
To change the image_means and image_stds of the data:
One can pass also a list of transformations, by keyword, using the SupportedTransform value:
>>> from careamics.config.support import SupportedTransform
>>> data = DataConfig(
... data_type="tiff",
... patch_size=[128, 128],
... batch_size=4,
... axes="YX",
... transforms=[
... {
... "name": "XYFlip",
... }
... ]
... )
Source code in src/careamics/config/data/data_model.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
axes
instance-attribute
#
Axes of the data, as defined in SupportedAxes.
batch_size = Field(default=1, ge=1, validate_default=True)
class-attribute
instance-attribute
#
Batch size for training.
data_type
instance-attribute
#
Type of input data, numpy.ndarray (array) or paths (tiff and custom), as defined in SupportedData.
image_means = Field(default=None, min_length=0, max_length=32)
class-attribute
instance-attribute
#
Means of the data across channels, used for normalization.
image_stds = Field(default=None, min_length=0, max_length=32)
class-attribute
instance-attribute
#
Standard deviations of the data across channels, used for normalization.
patch_size = Field(..., min_length=2, max_length=3)
class-attribute
instance-attribute
#
Patch size, as used during training.
target_means = Field(default=None, min_length=0, max_length=32)
class-attribute
instance-attribute
#
Means of the target data across channels, used for normalization.
target_stds = Field(default=None, min_length=0, max_length=32)
class-attribute
instance-attribute
#
Standard deviations of the target data across channels, used for normalization.
train_dataloader_params = Field(default={'shuffle': True}, validate_default=True)
class-attribute
instance-attribute
#
Dictionary of PyTorch training dataloader parameters. The dataloader parameters, should include the shuffle
key, which is set to True
by default. We strongly recommend to keep it as True
to ensure the best training results.
transforms = Field(default=[XYFlipModel(), XYRandomRotate90Model()], validate_default=True)
class-attribute
instance-attribute
#
List of transformations to apply to the data, available transforms are defined in SupportedTransform.
val_dataloader_params = Field(default={})
class-attribute
instance-attribute
#
Dictionary of PyTorch validation dataloader parameters.
__str__()
#
Pretty string reprensenting the configuration.
Returns:
Type | Description |
---|---|
str | Pretty string. |
all_elements_power_of_2_minimum_8(patch_list)
classmethod
#
Validate patch size.
Patch size must be powers of 2 and minimum 8.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
patch_list | list of int | Patch size. | required |
Returns:
Type | Description |
---|---|
list of int | Validated patch size. |
Raises:
Type | Description |
---|---|
ValueError | If the patch size is smaller than 8. |
ValueError | If the patch size is not a power of 2. |
Source code in src/careamics/config/data/data_model.py
axes_valid(axes)
classmethod
#
Validate axes.
Axes must: - be a combination of 'STCZYX' - not contain duplicates - contain at least 2 contiguous axes: X and Y - contain at most 4 axes - not contain both S and T axes
Parameters:
Name | Type | Description | Default |
---|---|---|---|
axes | str | Axes to validate. | required |
Returns:
Type | Description |
---|---|
str | Validated axes. |
Raises:
Type | Description |
---|---|
ValueError | If axes are not valid. |
Source code in src/careamics/config/data/data_model.py
set_3D(axes, patch_size)
#
Set 3D parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
axes | str | Axes. | required |
patch_size | list of int | Patch size. | required |
Source code in src/careamics/config/data/data_model.py
set_means_and_stds(image_means, image_stds, target_means=None, target_stds=None)
#
Set mean and standard deviation of the data across channels.
This method should be used instead setting the fields directly, as it would otherwise trigger a validation error.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_means | (ndarray, tuple or list) | Mean values for normalization. | required |
image_stds | (ndarray, tuple or list) | Standard deviation values for normalization. | required |
target_means | (ndarray, tuple or list) | Target mean values for normalization, by default (). | None |
target_stds | (ndarray, tuple or list) | Target standard deviation values for normalization, by default (). | None |
Source code in src/careamics/config/data/data_model.py
shuffle_train_dataloader(train_dataloader_params)
classmethod
#
Validate that "shuffle" is included in the training dataloader params.
A warning will be raised if shuffle=False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_dataloader_params | dict of {str: Any} | The training dataloader parameters. | required |
Returns:
Type | Description |
---|---|
dict of {str: Any} | The validated training dataloader parameters. |
Raises:
Type | Description |
---|---|
ValueError | If "shuffle" is not included in the training dataloader params. |
Source code in src/careamics/config/data/data_model.py
std_only_with_mean()
#
Check that mean and std are either both None, or both specified.
Returns:
Type | Description |
---|---|
Self | Validated data model. |
Raises:
Type | Description |
---|---|
ValueError | If std is not None and mean is None. |
Source code in src/careamics/config/data/data_model.py
validate_dimensions()
#
Validate 2D/3D dimensions between axes, patch size and transforms.
Returns:
Type | Description |
---|---|
Self | Validated data model. |
Raises:
Type | Description |
---|---|
ValueError | If the transforms are not valid. |
Source code in src/careamics/config/data/data_model.py
np_float_to_scientific_str(x)
#
Return a string scientific representation of a float.
In particular, this method is used to serialize floats to strings, allowing numpy.float32 to be passed in the Pydantic model and written to a yaml file as str.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | float | Input value. | required |
Returns:
Type | Description |
---|---|
str | Scientific string representation of the input value. |