Skip to content

ng_data_model

Data configuration.

CoordFilters = Union[MaskFilterModel] module-attribute #

Coordinate filters.

Float = Annotated[float, PlainSerializer(np_float_to_scientific_str, return_type=str)] module-attribute #

Annotated float type, used to serialize floats to strings.

PatchFilters = Union[MaxFilterModel, MeanSTDFilterModel, ShannonFilterModel] module-attribute #

Patch filters.

PatchingStrategies = Union[RandomPatchingModel, TiledPatchingModel, WholePatchingModel] module-attribute #

Patching strategies.

NGDataConfig #

Bases: BaseModel

Next-Generation Dataset configuration.

NGDataConfig are used for both training and prediction, with the patching strategy determining how the data is processed. Note that random is the only patching strategy compatible with training, while tiled and whole are only used for prediction.

If std is specified, mean must be specified as well. Note that setting the std first and then the mean (if they were both None before) will raise a validation error. Prefer instead set_means_and_stds to set both at once. Means and stds are expected to be lists of floats, one for each channel. For supervised tasks, the mean and std of the target could be different from the input data.

All supported transforms are defined in the SupportedTransform enum.

Source code in src/careamics/config/data/ng_data_model.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
class NGDataConfig(BaseModel):
    """Next-Generation Dataset configuration.

    NGDataConfig are used for both training and prediction, with the patching strategy
    determining how the data is processed. Note that `random` is the only patching
    strategy compatible with training, while `tiled` and `whole` are only used for
    prediction.

    If std is specified, mean must be specified as well. Note that setting the std first
    and then the mean (if they were both `None` before) will raise a validation error.
    Prefer instead `set_means_and_stds` to set both at once. Means and stds are expected
    to be lists of floats, one for each channel. For supervised tasks, the mean and std
    of the target could be different from the input data.

    All supported transforms are defined in the SupportedTransform enum.
    """

    # Pydantic class configuration
    model_config = ConfigDict(
        validate_assignment=True,
    )

    # Dataset configuration
    data_type: Literal["array", "tiff", "zarr", "custom"]
    """Type of input data."""

    axes: str
    """Axes of the data, as defined in SupportedAxes."""

    patching: PatchingStrategies = Field(..., discriminator="name")
    """Patching strategy to use. Note that `random` is the only supported strategy for
    training, while `tiled` and `whole` are only used for prediction."""

    # Optional fields
    batch_size: int = Field(default=1, ge=1, validate_default=True)
    """Batch size for training."""

    patch_filter: PatchFilters | None = Field(default=None, discriminator="name")
    """Patch filter to apply when using random patching. Only available during
    training."""

    coord_filter: CoordFilters | None = Field(default=None, discriminator="name")
    """Coordinate filter to apply when using random patching. Only available during
    training."""

    patch_filter_patience: int = Field(default=5, ge=1)
    """Number of consecutive patches not passing the filter before accepting the next
    patch."""

    image_means: list[Float] | None = Field(default=None, min_length=0, max_length=32)
    """Means of the data across channels, used for normalization."""

    image_stds: list[Float] | None = Field(default=None, min_length=0, max_length=32)
    """Standard deviations of the data across channels, used for normalization."""

    target_means: list[Float] | None = Field(default=None, min_length=0, max_length=32)
    """Means of the target data across channels, used for normalization."""

    target_stds: list[Float] | None = Field(default=None, min_length=0, max_length=32)
    """Standard deviations of the target data across channels, used for
    normalization."""

    transforms: Sequence[Union[XYFlipModel, XYRandomRotate90Model]] = Field(
        default=(
            XYFlipModel(),
            XYRandomRotate90Model(),
        ),
        validate_default=True,
    )
    """List of transformations to apply to the data, available transforms are defined
    in SupportedTransform."""

    train_dataloader_params: dict[str, Any] = Field(
        default={"shuffle": True}, validate_default=True
    )
    """Dictionary of PyTorch training dataloader parameters. The dataloader parameters,
    should include the `shuffle` key, which is set to `True` by default. We strongly
    recommend to keep it as `True` to ensure the best training results."""

    val_dataloader_params: dict[str, Any] = Field(default={})
    """Dictionary of PyTorch validation dataloader parameters."""

    test_dataloader_params: dict[str, Any] = Field(default={})
    """Dictionary of PyTorch test dataloader parameters."""

    seed: int | None = Field(default_factory=generate_random_seed, gt=0)
    """Random seed for reproducibility. If not specified, a random seed is generated."""

    @field_validator("axes")
    @classmethod
    def axes_valid(cls, axes: str) -> str:
        """
        Validate axes.

        Axes must:
        - be a combination of 'STCZYX'
        - not contain duplicates
        - contain at least 2 contiguous axes: X and Y
        - contain at most 4 axes
        - not contain both S and T axes

        Parameters
        ----------
        axes : str
            Axes to validate.

        Returns
        -------
        str
            Validated axes.

        Raises
        ------
        ValueError
            If axes are not valid.
        """
        # Validate axes
        check_axes_validity(axes)

        return axes

    @field_validator("train_dataloader_params")
    @classmethod
    def shuffle_train_dataloader(
        cls, train_dataloader_params: dict[str, Any]
    ) -> dict[str, Any]:
        """
        Validate that "shuffle" is included in the training dataloader params.

        A warning will be raised if `shuffle=False`.

        Parameters
        ----------
        train_dataloader_params : dict of {str: Any}
            The training dataloader parameters.

        Returns
        -------
        dict of {str: Any}
            The validated training dataloader parameters.

        Raises
        ------
        ValueError
            If "shuffle" is not included in the training dataloader params.
        """
        if "shuffle" not in train_dataloader_params:
            raise ValueError(
                "Value for 'shuffle' was not included in the `train_dataloader_params`."
            )
        elif ("shuffle" in train_dataloader_params) and (
            not train_dataloader_params["shuffle"]
        ):
            warn(
                "Dataloader parameters include `shuffle=False`, this will be passed to "
                "the training dataloader and may lead to lower quality results.",
                stacklevel=1,
            )
        return train_dataloader_params

    @model_validator(mode="after")
    def std_only_with_mean(self: Self) -> Self:
        """
        Check that mean and std are either both None, or both specified.

        Returns
        -------
        Self
            Validated data model.

        Raises
        ------
        ValueError
            If std is not None and mean is None.
        """
        # check that mean and std are either both None, or both specified
        if (self.image_means and not self.image_stds) or (
            self.image_stds and not self.image_means
        ):
            raise ValueError(
                "Mean and std must be either both None, or both specified."
            )

        elif (self.image_means is not None and self.image_stds is not None) and (
            len(self.image_means) != len(self.image_stds)
        ):
            raise ValueError("Mean and std must be specified for each input channel.")

        if (self.target_means and not self.target_stds) or (
            self.target_stds and not self.target_means
        ):
            raise ValueError(
                "Mean and std must be either both None, or both specified "
            )

        elif self.target_means is not None and self.target_stds is not None:
            if len(self.target_means) != len(self.target_stds):
                raise ValueError(
                    "Mean and std must be either both None, or both specified for each "
                    "target channel."
                )

        return self

    @model_validator(mode="after")
    def validate_dimensions(self: Self) -> Self:
        """
        Validate 2D/3D dimensions between axes and patch size.

        Returns
        -------
        Self
            Validated data model.

        Raises
        ------
        ValueError
            If the patch size dimension is not compatible with the axes.
        """
        if "Z" in self.axes:
            if (
                hasattr(self.patching, "patch_size")
                and len(self.patching.patch_size) != 3
            ):
                raise ValueError(
                    f"`patch_size` in `patching` must have 3 dimensions if the data is"
                    f" 3D, got axes {self.axes})."
                )
        else:
            if (
                hasattr(self.patching, "patch_size")
                and len(self.patching.patch_size) != 2
            ):
                raise ValueError(
                    f"`patch_size` in `patching` must have 2 dimensions if the data is"
                    f" 3D, got axes {self.axes})."
                )

        return self

    @model_validator(mode="after")
    def propagate_seed_to_filters(self: Self) -> Self:
        """
        Propagate the main seed to patch and coordinate filters that support seeds.

        This ensures that all filters use the same seed for reproducibility,
        unless they already have a seed explicitly set.

        Returns
        -------
        Self
            Data model with propagated seeds.
        """
        if self.seed is not None:
            if self.patch_filter is not None:
                if (
                    hasattr(self.patch_filter, "seed")
                    and self.patch_filter.seed is None
                ):
                    self.patch_filter.seed = self.seed

            if self.coord_filter is not None:
                if (
                    hasattr(self.coord_filter, "seed")
                    and self.coord_filter.seed is None
                ):
                    self.coord_filter.seed = self.seed

        return self

    @model_validator(mode="after")
    def propagate_seed_to_transforms(self: Self) -> Self:
        """
        Propagate the main seed to all transforms that support seeds.

        This ensures that all transforms use the same seed for reproducibility,
        unless they already have a seed explicitly set.

        Returns
        -------
        Self
            Data model with propagated seeds.
        """
        if self.seed is not None:
            for transform in self.transforms:
                if hasattr(transform, "seed") and transform.seed is None:
                    transform.seed = self.seed
        return self

    @field_validator("train_dataloader_params", "val_dataloader_params", mode="before")
    @classmethod
    def set_default_pin_memory(
        cls, dataloader_params: dict[str, Any]
    ) -> dict[str, Any]:
        """
        Set default pin_memory for dataloader parameters if not provided.

        - If 'pin_memory' is not set, it defaults to True if CUDA is available.

        Parameters
        ----------
        dataloader_params : dict of {str: Any}
            The dataloader parameters.

        Returns
        -------
        dict of {str: Any}
            The dataloader parameters with pin_memory default applied.
        """
        if "pin_memory" not in dataloader_params:
            import torch

            dataloader_params["pin_memory"] = torch.cuda.is_available()
        return dataloader_params

    @field_validator("train_dataloader_params", mode="before")
    @classmethod
    def set_default_train_workers(
        cls, dataloader_params: dict[str, Any]
    ) -> dict[str, Any]:
        """
        Set default num_workers for training dataloader if not provided.

        - If 'num_workers' is not set, it defaults to the number of available CPU cores.

        Parameters
        ----------
        dataloader_params : dict of {str: Any}
            The training dataloader parameters.

        Returns
        -------
        dict of {str: Any}
            The dataloader parameters with num_workers default applied.
        """
        if "num_workers" not in dataloader_params:
            # Use 0 workers during tests, otherwise use all available CPU cores
            if "pytest" in sys.modules:
                dataloader_params["num_workers"] = 0
            else:
                dataloader_params["num_workers"] = os.cpu_count()

        return dataloader_params

    @model_validator(mode="after")
    def set_val_workers_to_match_train(self: Self) -> Self:
        """
        Set validation dataloader num_workers to match training dataloader.

        If num_workers is not specified in val_dataloader_params, it will be set to the
        same value as train_dataloader_params["num_workers"].

        Returns
        -------
        Self
            Validated data model with synchronized num_workers.
        """
        if "num_workers" not in self.val_dataloader_params:
            self.val_dataloader_params["num_workers"] = self.train_dataloader_params[
                "num_workers"
            ]
        return self

    def __str__(self) -> str:
        """
        Pretty string reprensenting the configuration.

        Returns
        -------
        str
            Pretty string.
        """
        return pformat(self.model_dump())

    def _update(self, **kwargs: Any) -> None:
        """
        Update multiple arguments at once.

        Parameters
        ----------
        **kwargs : Any
            Keyword arguments to update.
        """
        self.__dict__.update(kwargs)
        self.__class__.model_validate(self.__dict__)

    def set_means_and_stds(
        self,
        image_means: Union[NDArray, tuple, list, None],
        image_stds: Union[NDArray, tuple, list, None],
        target_means: Union[NDArray, tuple, list, None] | None = None,
        target_stds: Union[NDArray, tuple, list, None] | None = None,
    ) -> None:
        """
        Set mean and standard deviation of the data across channels.

        This method should be used instead setting the fields directly, as it would
        otherwise trigger a validation error.

        Parameters
        ----------
        image_means : numpy.ndarray, tuple or list
            Mean values for normalization.
        image_stds : numpy.ndarray, tuple or list
            Standard deviation values for normalization.
        target_means : numpy.ndarray, tuple or list, optional
            Target mean values for normalization, by default ().
        target_stds : numpy.ndarray, tuple or list, optional
            Target standard deviation values for normalization, by default ().
        """
        # make sure we pass a list
        if image_means is not None:
            image_means = list(image_means)
        if image_stds is not None:
            image_stds = list(image_stds)
        if target_means is not None:
            target_means = list(target_means)
        if target_stds is not None:
            target_stds = list(target_stds)

        self._update(
            image_means=image_means,
            image_stds=image_stds,
            target_means=target_means,
            target_stds=target_stds,
        )

axes instance-attribute #

Axes of the data, as defined in SupportedAxes.

batch_size = Field(default=1, ge=1, validate_default=True) class-attribute instance-attribute #

Batch size for training.

coord_filter = Field(default=None, discriminator='name') class-attribute instance-attribute #

Coordinate filter to apply when using random patching. Only available during training.

data_type instance-attribute #

Type of input data.

image_means = Field(default=None, min_length=0, max_length=32) class-attribute instance-attribute #

Means of the data across channels, used for normalization.

image_stds = Field(default=None, min_length=0, max_length=32) class-attribute instance-attribute #

Standard deviations of the data across channels, used for normalization.

patch_filter = Field(default=None, discriminator='name') class-attribute instance-attribute #

Patch filter to apply when using random patching. Only available during training.

patch_filter_patience = Field(default=5, ge=1) class-attribute instance-attribute #

Number of consecutive patches not passing the filter before accepting the next patch.

patching = Field(..., discriminator='name') class-attribute instance-attribute #

Patching strategy to use. Note that random is the only supported strategy for training, while tiled and whole are only used for prediction.

seed = Field(default_factory=generate_random_seed, gt=0) class-attribute instance-attribute #

Random seed for reproducibility. If not specified, a random seed is generated.

target_means = Field(default=None, min_length=0, max_length=32) class-attribute instance-attribute #

Means of the target data across channels, used for normalization.

target_stds = Field(default=None, min_length=0, max_length=32) class-attribute instance-attribute #

Standard deviations of the target data across channels, used for normalization.

test_dataloader_params = Field(default={}) class-attribute instance-attribute #

Dictionary of PyTorch test dataloader parameters.

train_dataloader_params = Field(default={'shuffle': True}, validate_default=True) class-attribute instance-attribute #

Dictionary of PyTorch training dataloader parameters. The dataloader parameters, should include the shuffle key, which is set to True by default. We strongly recommend to keep it as True to ensure the best training results.

transforms = Field(default=(XYFlipModel(), XYRandomRotate90Model()), validate_default=True) class-attribute instance-attribute #

List of transformations to apply to the data, available transforms are defined in SupportedTransform.

val_dataloader_params = Field(default={}) class-attribute instance-attribute #

Dictionary of PyTorch validation dataloader parameters.

__str__() #

Pretty string reprensenting the configuration.

Returns:

Type Description
str

Pretty string.

Source code in src/careamics/config/data/ng_data_model.py
def __str__(self) -> str:
    """
    Pretty string reprensenting the configuration.

    Returns
    -------
    str
        Pretty string.
    """
    return pformat(self.model_dump())

axes_valid(axes) classmethod #

Validate axes.

Axes must: - be a combination of 'STCZYX' - not contain duplicates - contain at least 2 contiguous axes: X and Y - contain at most 4 axes - not contain both S and T axes

Parameters:

Name Type Description Default
axes str

Axes to validate.

required

Returns:

Type Description
str

Validated axes.

Raises:

Type Description
ValueError

If axes are not valid.

Source code in src/careamics/config/data/ng_data_model.py
@field_validator("axes")
@classmethod
def axes_valid(cls, axes: str) -> str:
    """
    Validate axes.

    Axes must:
    - be a combination of 'STCZYX'
    - not contain duplicates
    - contain at least 2 contiguous axes: X and Y
    - contain at most 4 axes
    - not contain both S and T axes

    Parameters
    ----------
    axes : str
        Axes to validate.

    Returns
    -------
    str
        Validated axes.

    Raises
    ------
    ValueError
        If axes are not valid.
    """
    # Validate axes
    check_axes_validity(axes)

    return axes

propagate_seed_to_filters() #

Propagate the main seed to patch and coordinate filters that support seeds.

This ensures that all filters use the same seed for reproducibility, unless they already have a seed explicitly set.

Returns:

Type Description
Self

Data model with propagated seeds.

Source code in src/careamics/config/data/ng_data_model.py
@model_validator(mode="after")
def propagate_seed_to_filters(self: Self) -> Self:
    """
    Propagate the main seed to patch and coordinate filters that support seeds.

    This ensures that all filters use the same seed for reproducibility,
    unless they already have a seed explicitly set.

    Returns
    -------
    Self
        Data model with propagated seeds.
    """
    if self.seed is not None:
        if self.patch_filter is not None:
            if (
                hasattr(self.patch_filter, "seed")
                and self.patch_filter.seed is None
            ):
                self.patch_filter.seed = self.seed

        if self.coord_filter is not None:
            if (
                hasattr(self.coord_filter, "seed")
                and self.coord_filter.seed is None
            ):
                self.coord_filter.seed = self.seed

    return self

propagate_seed_to_transforms() #

Propagate the main seed to all transforms that support seeds.

This ensures that all transforms use the same seed for reproducibility, unless they already have a seed explicitly set.

Returns:

Type Description
Self

Data model with propagated seeds.

Source code in src/careamics/config/data/ng_data_model.py
@model_validator(mode="after")
def propagate_seed_to_transforms(self: Self) -> Self:
    """
    Propagate the main seed to all transforms that support seeds.

    This ensures that all transforms use the same seed for reproducibility,
    unless they already have a seed explicitly set.

    Returns
    -------
    Self
        Data model with propagated seeds.
    """
    if self.seed is not None:
        for transform in self.transforms:
            if hasattr(transform, "seed") and transform.seed is None:
                transform.seed = self.seed
    return self

set_default_pin_memory(dataloader_params) classmethod #

Set default pin_memory for dataloader parameters if not provided.

  • If 'pin_memory' is not set, it defaults to True if CUDA is available.

Parameters:

Name Type Description Default
dataloader_params dict of {str: Any}

The dataloader parameters.

required

Returns:

Type Description
dict of {str: Any}

The dataloader parameters with pin_memory default applied.

Source code in src/careamics/config/data/ng_data_model.py
@field_validator("train_dataloader_params", "val_dataloader_params", mode="before")
@classmethod
def set_default_pin_memory(
    cls, dataloader_params: dict[str, Any]
) -> dict[str, Any]:
    """
    Set default pin_memory for dataloader parameters if not provided.

    - If 'pin_memory' is not set, it defaults to True if CUDA is available.

    Parameters
    ----------
    dataloader_params : dict of {str: Any}
        The dataloader parameters.

    Returns
    -------
    dict of {str: Any}
        The dataloader parameters with pin_memory default applied.
    """
    if "pin_memory" not in dataloader_params:
        import torch

        dataloader_params["pin_memory"] = torch.cuda.is_available()
    return dataloader_params

set_default_train_workers(dataloader_params) classmethod #

Set default num_workers for training dataloader if not provided.

  • If 'num_workers' is not set, it defaults to the number of available CPU cores.

Parameters:

Name Type Description Default
dataloader_params dict of {str: Any}

The training dataloader parameters.

required

Returns:

Type Description
dict of {str: Any}

The dataloader parameters with num_workers default applied.

Source code in src/careamics/config/data/ng_data_model.py
@field_validator("train_dataloader_params", mode="before")
@classmethod
def set_default_train_workers(
    cls, dataloader_params: dict[str, Any]
) -> dict[str, Any]:
    """
    Set default num_workers for training dataloader if not provided.

    - If 'num_workers' is not set, it defaults to the number of available CPU cores.

    Parameters
    ----------
    dataloader_params : dict of {str: Any}
        The training dataloader parameters.

    Returns
    -------
    dict of {str: Any}
        The dataloader parameters with num_workers default applied.
    """
    if "num_workers" not in dataloader_params:
        # Use 0 workers during tests, otherwise use all available CPU cores
        if "pytest" in sys.modules:
            dataloader_params["num_workers"] = 0
        else:
            dataloader_params["num_workers"] = os.cpu_count()

    return dataloader_params

set_means_and_stds(image_means, image_stds, target_means=None, target_stds=None) #

Set mean and standard deviation of the data across channels.

This method should be used instead setting the fields directly, as it would otherwise trigger a validation error.

Parameters:

Name Type Description Default
image_means (ndarray, tuple or list)

Mean values for normalization.

required
image_stds (ndarray, tuple or list)

Standard deviation values for normalization.

required
target_means (ndarray, tuple or list)

Target mean values for normalization, by default ().

None
target_stds (ndarray, tuple or list)

Target standard deviation values for normalization, by default ().

None
Source code in src/careamics/config/data/ng_data_model.py
def set_means_and_stds(
    self,
    image_means: Union[NDArray, tuple, list, None],
    image_stds: Union[NDArray, tuple, list, None],
    target_means: Union[NDArray, tuple, list, None] | None = None,
    target_stds: Union[NDArray, tuple, list, None] | None = None,
) -> None:
    """
    Set mean and standard deviation of the data across channels.

    This method should be used instead setting the fields directly, as it would
    otherwise trigger a validation error.

    Parameters
    ----------
    image_means : numpy.ndarray, tuple or list
        Mean values for normalization.
    image_stds : numpy.ndarray, tuple or list
        Standard deviation values for normalization.
    target_means : numpy.ndarray, tuple or list, optional
        Target mean values for normalization, by default ().
    target_stds : numpy.ndarray, tuple or list, optional
        Target standard deviation values for normalization, by default ().
    """
    # make sure we pass a list
    if image_means is not None:
        image_means = list(image_means)
    if image_stds is not None:
        image_stds = list(image_stds)
    if target_means is not None:
        target_means = list(target_means)
    if target_stds is not None:
        target_stds = list(target_stds)

    self._update(
        image_means=image_means,
        image_stds=image_stds,
        target_means=target_means,
        target_stds=target_stds,
    )

set_val_workers_to_match_train() #

Set validation dataloader num_workers to match training dataloader.

If num_workers is not specified in val_dataloader_params, it will be set to the same value as train_dataloader_params["num_workers"].

Returns:

Type Description
Self

Validated data model with synchronized num_workers.

Source code in src/careamics/config/data/ng_data_model.py
@model_validator(mode="after")
def set_val_workers_to_match_train(self: Self) -> Self:
    """
    Set validation dataloader num_workers to match training dataloader.

    If num_workers is not specified in val_dataloader_params, it will be set to the
    same value as train_dataloader_params["num_workers"].

    Returns
    -------
    Self
        Validated data model with synchronized num_workers.
    """
    if "num_workers" not in self.val_dataloader_params:
        self.val_dataloader_params["num_workers"] = self.train_dataloader_params[
            "num_workers"
        ]
    return self

shuffle_train_dataloader(train_dataloader_params) classmethod #

Validate that "shuffle" is included in the training dataloader params.

A warning will be raised if shuffle=False.

Parameters:

Name Type Description Default
train_dataloader_params dict of {str: Any}

The training dataloader parameters.

required

Returns:

Type Description
dict of {str: Any}

The validated training dataloader parameters.

Raises:

Type Description
ValueError

If "shuffle" is not included in the training dataloader params.

Source code in src/careamics/config/data/ng_data_model.py
@field_validator("train_dataloader_params")
@classmethod
def shuffle_train_dataloader(
    cls, train_dataloader_params: dict[str, Any]
) -> dict[str, Any]:
    """
    Validate that "shuffle" is included in the training dataloader params.

    A warning will be raised if `shuffle=False`.

    Parameters
    ----------
    train_dataloader_params : dict of {str: Any}
        The training dataloader parameters.

    Returns
    -------
    dict of {str: Any}
        The validated training dataloader parameters.

    Raises
    ------
    ValueError
        If "shuffle" is not included in the training dataloader params.
    """
    if "shuffle" not in train_dataloader_params:
        raise ValueError(
            "Value for 'shuffle' was not included in the `train_dataloader_params`."
        )
    elif ("shuffle" in train_dataloader_params) and (
        not train_dataloader_params["shuffle"]
    ):
        warn(
            "Dataloader parameters include `shuffle=False`, this will be passed to "
            "the training dataloader and may lead to lower quality results.",
            stacklevel=1,
        )
    return train_dataloader_params

std_only_with_mean() #

Check that mean and std are either both None, or both specified.

Returns:

Type Description
Self

Validated data model.

Raises:

Type Description
ValueError

If std is not None and mean is None.

Source code in src/careamics/config/data/ng_data_model.py
@model_validator(mode="after")
def std_only_with_mean(self: Self) -> Self:
    """
    Check that mean and std are either both None, or both specified.

    Returns
    -------
    Self
        Validated data model.

    Raises
    ------
    ValueError
        If std is not None and mean is None.
    """
    # check that mean and std are either both None, or both specified
    if (self.image_means and not self.image_stds) or (
        self.image_stds and not self.image_means
    ):
        raise ValueError(
            "Mean and std must be either both None, or both specified."
        )

    elif (self.image_means is not None and self.image_stds is not None) and (
        len(self.image_means) != len(self.image_stds)
    ):
        raise ValueError("Mean and std must be specified for each input channel.")

    if (self.target_means and not self.target_stds) or (
        self.target_stds and not self.target_means
    ):
        raise ValueError(
            "Mean and std must be either both None, or both specified "
        )

    elif self.target_means is not None and self.target_stds is not None:
        if len(self.target_means) != len(self.target_stds):
            raise ValueError(
                "Mean and std must be either both None, or both specified for each "
                "target channel."
            )

    return self

validate_dimensions() #

Validate 2D/3D dimensions between axes and patch size.

Returns:

Type Description
Self

Validated data model.

Raises:

Type Description
ValueError

If the patch size dimension is not compatible with the axes.

Source code in src/careamics/config/data/ng_data_model.py
@model_validator(mode="after")
def validate_dimensions(self: Self) -> Self:
    """
    Validate 2D/3D dimensions between axes and patch size.

    Returns
    -------
    Self
        Validated data model.

    Raises
    ------
    ValueError
        If the patch size dimension is not compatible with the axes.
    """
    if "Z" in self.axes:
        if (
            hasattr(self.patching, "patch_size")
            and len(self.patching.patch_size) != 3
        ):
            raise ValueError(
                f"`patch_size` in `patching` must have 3 dimensions if the data is"
                f" 3D, got axes {self.axes})."
            )
    else:
        if (
            hasattr(self.patching, "patch_size")
            and len(self.patching.patch_size) != 2
        ):
            raise ValueError(
                f"`patch_size` in `patching` must have 2 dimensions if the data is"
                f" 3D, got axes {self.axes})."
            )

    return self

generate_random_seed() #

Generate a random seed for reproducibility.

Returns:

Type Description
int

A random integer between 1 and 2^31 - 1.

Source code in src/careamics/config/data/ng_data_model.py
def generate_random_seed() -> int:
    """Generate a random seed for reproducibility.

    Returns
    -------
    int
        A random integer between 1 and 2^31 - 1.
    """
    return random.randint(1, 2**31 - 1)

np_float_to_scientific_str(x) #

Return a string scientific representation of a float.

In particular, this method is used to serialize floats to strings, allowing numpy.float32 to be passed in the Pydantic model and written to a yaml file as str.

Parameters:

Name Type Description Default
x float

Input value.

required

Returns:

Type Description
str

Scientific string representation of the input value.

Source code in src/careamics/config/data/ng_data_model.py
def np_float_to_scientific_str(x: float) -> str:
    """Return a string scientific representation of a float.

    In particular, this method is used to serialize floats to strings, allowing
    numpy.float32 to be passed in the Pydantic model and written to a yaml file as str.

    Parameters
    ----------
    x : float
        Input value.

    Returns
    -------
    str
        Scientific string representation of the input value.
    """
    return np.format_float_scientific(x, precision=7)