normalization_config
Pydantic models for normalization strategies.
MeanStdConfig #
Bases: BaseModel
Mean and standard deviation normalization configuration.
Holds mean and standard deviation statistics for input and target, used to normalize data. If not provided, statistics can be computed later.
Attributes:
| Name | Type | Description |
|---|---|---|
name | Literal['mean_std'] | Identifier for the mean-std normalization scheme. |
input_means | list[float] | None | Means of input channels/features, or None for automatic computation. |
input_stds | list[float] | None | Standard deviations of input channels/features, or None for automatic computation. |
target_means | list[float] | None | Means of target channels/features, or None for automatic computation. |
target_stds | list[float] | None | Standard deviations of target channels/features, or None for automatic computation. |
Source code in src/careamics/config/data/normalization_config.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | |
needs_computation() #
Check if statistics need to be computed.
Returns:
| Type | Description |
|---|---|
bool | True if input statistics are missing, False otherwise. |
Source code in src/careamics/config/data/normalization_config.py
set_input_stats(means, stds) #
Set input means and stds together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
means | list[float] | Mean values per channel. | required |
stds | list[float] | Standard deviation values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
set_target_stats(means, stds) #
Set target means and stds together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
means | list[float] | Mean values per channel. | required |
stds | list[float] | Standard deviation values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
validate_means_stds() #
Validate that means and stds are provided in pairs or set to None.
Returns:
| Type | Description |
|---|---|
Self | The validated model instance. |
Raises:
| Type | Description |
|---|---|
ValueError | If only one of means or stds is provided for input or target, or if each pair has mismatched lengths. |
Source code in src/careamics/config/data/normalization_config.py
MinMaxConfig #
Bases: BaseModel
Min-max normalization configuration.
Stores minimum and maximum statistics for scaling data into a desired range. If not provided, statistics can be computed from the data.
Attributes:
| Name | Type | Description |
|---|---|---|
name | Literal['minmax'] | Identifier for min-max normalization. |
input_mins | list[float] | None | Minimum values for input channels/features. |
input_maxes | list[float] | None | Maximum values for input channels/features. |
target_mins | list[float] | None | Minimum values for target channels/features. |
target_maxes | list[float] | None | Maximum values for target channels/features. |
Source code in src/careamics/config/data/normalization_config.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | |
needs_computation() #
Check if min/max values need to be computed.
Returns:
| Type | Description |
|---|---|
bool | True if input statistics are missing, False otherwise. |
Source code in src/careamics/config/data/normalization_config.py
set_input_range(mins, maxes) #
Set input mins and maxes together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mins | list[float] | Minimum values per channel. | required |
maxes | list[float] | Maximum values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
set_target_range(mins, maxes) #
Set target mins and maxes together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mins | list[float] | Minimum values per channel. | required |
maxes | list[float] | Maximum values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
validate_mins_maxes() #
Validate that mins and maxes are provided in pairs or both None.
Returns:
| Type | Description |
|---|---|
Self | The validated model instance. |
Source code in src/careamics/config/data/normalization_config.py
NoNormConfig #
Bases: BaseModel
No normalization configuration.
Indicates that no normalization should be applied.
Attributes:
| Name | Type | Description |
|---|---|---|
name | Literal['none'] | Identifier for no normalization scheme. |
Source code in src/careamics/config/data/normalization_config.py
needs_computation() #
Check if statistics need to be computed.
Returns:
| Type | Description |
|---|---|
bool | Always False, as no statistics are required. |
QuantileConfig #
Bases: BaseModel
Quantile normalization configuration.
Normalizes data using quantile-based range scaling. Quantile levels can be specified as a single value (applied to all channels) or a list (one per channel).
Attributes:
| Name | Type | Description |
|---|---|---|
name | Literal['quantile'] | Identifier for quantile normalization. |
lower_quantile | float | list[float] | Lower quantile level(s). Single float applies to all channels, or list for per-channel levels. Values must be in [0, 1). |
upper_quantile | float | list[float] | Upper quantile level(s). Single float applies to all channels, or list for per-channel levels. Values must be in (0, 1]. |
input_lower_quantile_values | list[float] | None | Computed lower quantile values for each input channel. |
input_upper_quantile_values | list[float] | None | Computed upper quantile values for each input channel. |
target_lower_quantile_values | list[float] | None | Computed lower quantile values for each target channel. |
target_upper_quantile_values | list[float] | None | Computed upper quantile values for each target channel. |
Source code in src/careamics/config/data/normalization_config.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | |
get_lower_quantiles_for_channels(n_channels) #
Get lower quantile levels expanded to n_channels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_channels | int | Number of channels in the data. | required |
Returns:
| Type | Description |
|---|---|
list[float] | Lower quantile levels for each channel. |
Source code in src/careamics/config/data/normalization_config.py
get_upper_quantiles_for_channels(n_channels) #
Get upper quantile levels expanded to n_channels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_channels | int | Number of channels in the data. | required |
Returns:
| Type | Description |
|---|---|
list[float] | Upper quantile levels for each channel. |
Source code in src/careamics/config/data/normalization_config.py
needs_computation() #
Check if quantile values need to be computed.
Returns:
| Type | Description |
|---|---|
bool | True if quantile values need to be computed. |
Source code in src/careamics/config/data/normalization_config.py
set_input_quantile_values(lower, upper) #
Set input quantile values together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lower | list[float] | Lower quantile values per channel. | required |
upper | list[float] | Upper quantile values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
set_target_quantile_values(lower, upper) #
Set target quantile values together to avoid validation errors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lower | list[float] | Lower quantile values per channel. | required |
upper | list[float] | Upper quantile values per channel. | required |
Source code in src/careamics/config/data/normalization_config.py
validate_quantile_levels() #
Validate quantile levels are in valid range and properly ordered.
Returns:
| Type | Description |
|---|---|
Self | The validated model instance. |
Source code in src/careamics/config/data/normalization_config.py
validate_quantile_values() #
Validate that computed quantile value lists are provided in pairs.
Returns:
| Type | Description |
|---|---|
Self | The validated model instance. |