loss_model
Configuration classes for LVAE losses.
KLLossConfig #
Bases: BaseModel
KL loss configuration.
Source code in src/careamics/config/loss_model.py
aggregation = 'mean' class-attribute instance-attribute #
Aggregation of the KL loss across different layers.
annealing = False class-attribute instance-attribute #
Whether to apply KL loss annealing.
annealtime = 10 class-attribute instance-attribute #
Number of epochs for which KL loss annealing is applied.
current_epoch = 0 class-attribute instance-attribute #
Current epoch in the training loop.
free_bits_coeff = 0.0 class-attribute instance-attribute #
Free bits coefficient for the KL loss.
loss_type = 'kl' class-attribute instance-attribute #
Type of KL divergence used as KL loss.
rescaling = 'latent_dim' class-attribute instance-attribute #
Rescaling of the KL loss.
start = -1 class-attribute instance-attribute #
Epoch at which KL loss annealing starts.
LVAELossConfig #
Bases: BaseModel
LVAE loss configuration.
Source code in src/careamics/config/loss_model.py
denoisplit_weight = 0.9 class-attribute instance-attribute #
Weight for the denoiSplit loss (used in the muSplit-deonoiSplit loss).
kl_params = KLLossConfig() class-attribute instance-attribute #
KL loss configuration.
kl_weight = 1.0 class-attribute instance-attribute #
Weight for the KL loss in the total net loss. (i.e., net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss).
loss_type instance-attribute #
Type of loss to use for LVAE.
musplit_weight = 0.1 class-attribute instance-attribute #
Weight for the muSplit loss (used in the muSplit-denoiSplit loss).
non_stochastic = False class-attribute instance-attribute #
Whether to sample latents and compute KL.
reconstruction_weight = 1.0 class-attribute instance-attribute #
Weight for the reconstruction loss in the total net loss (i.e., net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss).