loss_model
Configuration classes for LVAE losses.
KLLossConfig
#
Bases: BaseModel
KL loss configuration.
Source code in src/careamics/config/loss_model.py
aggregation = 'mean'
class-attribute
instance-attribute
#
Aggregation of the KL loss across different layers.
annealing = False
class-attribute
instance-attribute
#
Whether to apply KL loss annealing.
annealtime = 10
class-attribute
instance-attribute
#
Number of epochs for which KL loss annealing is applied.
current_epoch = 0
class-attribute
instance-attribute
#
Current epoch in the training loop.
free_bits_coeff = 0.0
class-attribute
instance-attribute
#
Free bits coefficient for the KL loss.
loss_type = 'kl'
class-attribute
instance-attribute
#
Type of KL divergence used as KL loss.
rescaling = 'latent_dim'
class-attribute
instance-attribute
#
Rescaling of the KL loss.
start = -1
class-attribute
instance-attribute
#
Epoch at which KL loss annealing starts.
LVAELossConfig
#
Bases: BaseModel
LVAE loss configuration.
Source code in src/careamics/config/loss_model.py
denoisplit_weight = 0.9
class-attribute
instance-attribute
#
Weight for the denoiSplit loss (used in the muSplit-deonoiSplit loss).
kl_params = KLLossConfig()
class-attribute
instance-attribute
#
KL loss configuration.
kl_weight = 1.0
class-attribute
instance-attribute
#
Weight for the KL loss in the total net loss. (i.e., net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss
).
loss_type
instance-attribute
#
Type of loss to use for LVAE.
musplit_weight = 0.1
class-attribute
instance-attribute
#
Weight for the muSplit loss (used in the muSplit-denoiSplit loss).
non_stochastic = False
class-attribute
instance-attribute
#
Whether to sample latents and compute KL.
reconstruction_weight = 1.0
class-attribute
instance-attribute
#
Weight for the reconstruction loss in the total net loss (i.e., net_loss = reconstruction_weight * rec_loss + kl_weight * kl_loss
).