training_model
Training configuration.
TrainingConfig #
Bases: BaseModel
Parameters related to the training.
Mandatory parameters are: - num_epochs: number of epochs, greater than 0. - batch_size: batch size, greater than 0. - augmentation: whether to use data augmentation or not (True or False).
Attributes:
| Name | Type | Description |
|---|---|---|
num_epochs | int | Number of epochs, greater than 0. |
Source code in src/careamics/config/training_model.py
checkpoint_callback = CheckpointModel() class-attribute instance-attribute #
Checkpoint callback configuration, following PyTorch Lightning Checkpoint callback.
early_stopping_callback = Field(default=None, validate_default=True) class-attribute instance-attribute #
Early stopping callback configuration, following PyTorch Lightning Checkpoint callback.
lightning_trainer_config = None class-attribute instance-attribute #
Configuration for the PyTorch Lightning Trainer, following PyTorch Lightning Trainer class
logger = None class-attribute instance-attribute #
Logger to use during training. If None, no logger will be used. Available loggers are defined in SupportedLogger.
__str__() #
Pretty string reprensenting the configuration.
Returns:
| Type | Description |
|---|---|
str | Pretty string. |
has_logger() #
Check if the logger is defined.
Returns:
| Type | Description |
|---|---|
bool | Whether the logger is defined or not. |