unet_module
Generic UNet Lightning DataModule.
UnetModule
#
Bases: LightningModule
CAREamics PyTorch Lightning module for UNet based algorithms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
algorithm_config | CAREAlgorithm, N2VAlgorithm, N2NAlgorithm, or dict | Configuration for the algorithm, either as an instance of a specific algorithm class or a dictionary that can be converted to an algorithm instance. | required |
Source code in src/careamics/lightning/dataset_ng/lightning_modules/unet_module.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
__init__(algorithm_config)
#
Instantiate UNet DataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
algorithm_config | CAREAlgorithm, N2VAlgorithm, N2NAlgorithm, or dict | Configuration for the algorithm, either as an instance of a specific algorithm class or a dictionary that can be converted to an algorithm instance. | required |
Source code in src/careamics/lightning/dataset_ng/lightning_modules/unet_module.py
configure_optimizers()
#
Configure optimizers.
Returns:
Type | Description |
---|---|
Any | A dictionary containing the optimizer and learning rate scheduler. |
Source code in src/careamics/lightning/dataset_ng/lightning_modules/unet_module.py
forward(x)
#
Default forward method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | Any | Input data. | required |
Returns:
Type | Description |
---|---|
Any | Output from the model. |
predict_step(batch, batch_idx, load_best_checkpoint=False)
#
Default predict step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch | ImageRegionData or (ImageRegionData, ImageRegionData) | A tuple containing the input data and optionally the target data. | required |
batch_idx | Any | The index of the current batch in the prediction loop. | required |
load_best_checkpoint | bool | Whether to load the best checkpoint before making predictions. | False |
Returns:
Type | Description |
---|---|
Any | The output batch containing the predictions. |