convert_prediction
Module containing functions to convert prediction outputs to desired form.
combine_samples(predictions) #
Combine predictions by data_idx.
Images are first grouped by their data_idx found in their region_spec, then sorted by ascending sample_idx before being stacked along the S dimension.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
predictions | list of ImageRegionData | List of | required |
Returns:
| Type | Description |
|---|---|
list of numpy.ndarray | List of combined predictions, one per unique |
list of str | List of sources, one per unique |
Source code in src/careamics/lightning/dataset_ng/prediction/convert_prediction.py
convert_prediction(predictions, tiled) #
Convert the Lightning trainer outputs to the desired form.
This method allows decollating batches and stitching back together tiled predictions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
predictions | list[ImageRegionData] | Output from | required |
tiled | bool | Whether the predictions are tiled. | required |
Returns:
| Type | Description |
|---|---|
list of numpy.ndarray | list of arrays with the axes SC(Z)YX. If there is only 1 output it will not be in a list. |
Source code in src/careamics/lightning/dataset_ng/prediction/convert_prediction.py
decollate_image_region_data(batch) #
Decollate a batch of ImageRegionData into a list of ImageRegionData.
Input batch has the following structure: - data: (B, C, (Z), Y, X) numpy.ndarray - source: sequence of str, length B - data_shape: sequence of tuple of int, each tuple being of length B - dtype: list of numpy.dtype, length B - axes: list of str, length B - region_spec: dict of {str: sequence}, each sequence being of length B - chunks: either a single tuple (1,) or a sequence of tuples of length B
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch | ImageRegionData | Batch of | required |
Returns:
| Type | Description |
|---|---|
list of ImageRegionData | List of |