train_data_module
Training and validation Lightning data modules.
TrainDataModule
#
Bases: LightningDataModule
CAREamics Ligthning training and validation data module.
The data module can be used with Path, str or numpy arrays. In the case of numpy arrays, it loads and computes all the patches in memory. For Path and str inputs, it calculates the total file size and estimate whether it can fit in memory. If it does not, it iterates through the files. This behaviour can be deactivated by setting use_in_memory
to False, in which case it will always use the iterating dataset to train on a Path or str.
The data can be either a folder containing images or a single file.
Validation can be omitted, in which case the validation data is extracted from the training data. The percentage of the training data to use for validation, as well as the minimum number of patches or files to split from the training data can be set using val_percentage
and val_minimum_split
, respectively.
To read custom data types, you can set data_type
to custom
in data_config
and provide a function that returns a numpy array from a path as read_source_func
parameter. The function will receive a Path object and an axies string as arguments, the axes being derived from the data_config
.
You can also provide a fnmatch
and Path.rglob
compatible expression (e.g. "*.czi") to filter the files extension using extension_filter
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_config | DataModel | Pydantic model for CAREamics data configuration. | required |
train_data | Path or str or ndarray | Training data, can be a path to a folder, a file or a numpy array. | required |
val_data | Path or str or ndarray | Validation data, can be a path to a folder, a file or a numpy array, by default None. | None |
train_data_target | Path or str or ndarray | Training target data, can be a path to a folder, a file or a numpy array, by default None. | None |
val_data_target | Path or str or ndarray | Validation target data, can be a path to a folder, a file or a numpy array, by default None. | None |
read_source_func | Callable | Function to read the source data, by default None. Only used for | None |
extension_filter | str | Filter for file extensions, by default "". Only used for | '' |
val_percentage | float | Percentage of the training data to use for validation, by default 0.1. Only used if | 0.1 |
val_minimum_split | int | Minimum number of patches or files to split from the training data for validation, by default 5. Only used if | 5 |
use_in_memory | bool | Use in memory dataset if possible, by default True. | True |
Attributes:
Name | Type | Description |
---|---|---|
data_config | DataModel | CAREamics data configuration. |
data_type | SupportedData | Expected data type, one of "tiff", "array" or "custom". |
batch_size | int | Batch size. |
use_in_memory | bool | Whether to use in memory dataset if possible. |
train_data | Path or ndarray | Training data. |
val_data | Path or ndarray | Validation data. |
train_data_target | Path or ndarray | Training target data. |
val_data_target | Path or ndarray | Validation target data. |
val_percentage | float | Percentage of the training data to use for validation, if no validation data is provided. |
val_minimum_split | int | Minimum number of patches or files to split from the training data for validation, if no validation data is provided. |
read_source_func | Optional[Callable] | Function to read the source data, used if |
extension_filter | str | Filter for file extensions, used if |
Source code in src/careamics/lightning/train_data_module.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
|
__init__(data_config, train_data, val_data=None, train_data_target=None, val_data_target=None, read_source_func=None, extension_filter='', val_percentage=0.1, val_minimum_split=5, use_in_memory=True)
#
Constructor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_config | DataModel | Pydantic model for CAREamics data configuration. | required |
train_data | Path or str or ndarray | Training data, can be a path to a folder, a file or a numpy array. | required |
val_data | Path or str or ndarray | Validation data, can be a path to a folder, a file or a numpy array, by default None. | None |
train_data_target | Path or str or ndarray | Training target data, can be a path to a folder, a file or a numpy array, by default None. | None |
val_data_target | Path or str or ndarray | Validation target data, can be a path to a folder, a file or a numpy array, by default None. | None |
read_source_func | Callable | Function to read the source data, by default None. Only used for | None |
extension_filter | str | Filter for file extensions, by default "". Only used for | '' |
val_percentage | float | Percentage of the training data to use for validation, by default 0.1. Only used if | 0.1 |
val_minimum_split | int | Minimum number of patches or files to split from the training data for validation, by default 5. Only used if | 5 |
use_in_memory | bool | Use in memory dataset if possible, by default True. | True |
Raises:
Type | Description |
---|---|
NotImplementedError | Raised if target data is provided. |
ValueError | If the input types are mixed (e.g. Path and numpy.ndarray). |
ValueError | If the data type is |
ValueError | If the data type is |
ValueError | If the data type is |
Source code in src/careamics/lightning/train_data_module.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
get_data_statistics()
#
Return training data statistics.
Returns:
Type | Description |
---|---|
tuple of list | Means and standard deviations across channels of the training data. |
Source code in src/careamics/lightning/train_data_module.py
prepare_data()
#
Hook used to prepare the data before calling setup
.
Here, we only need to examine the data if it was provided as a str or a Path.
TODO: from lightning doc: prepare_data is called from the main process. It is not recommended to assign state here (e.g. self.x = y) since it is called on a single process and if you assign states here then they won't be available for other processes.
https://lightning.ai/docs/pytorch/stable/data/datamodule.html
Source code in src/careamics/lightning/train_data_module.py
setup(*args, **kwargs)
#
Hook called at the beginning of fit, validate, or predict.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args | Any | Unused. | () |
**kwargs | Any | Unused. | {} |
Source code in src/careamics/lightning/train_data_module.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
train_dataloader()
#
Create a dataloader for training.
Returns:
Type | Description |
---|---|
Any | Training dataloader. |
Source code in src/careamics/lightning/train_data_module.py
val_dataloader()
#
Create a dataloader for validation.
Returns:
Type | Description |
---|---|
Any | Validation dataloader. |
Source code in src/careamics/lightning/train_data_module.py
create_train_datamodule(train_data, data_type, patch_size, axes, batch_size, val_data=None, transforms=None, train_target_data=None, val_target_data=None, read_source_func=None, extension_filter='', val_percentage=0.1, val_minimum_patches=5, dataloader_params=None, use_in_memory=True)
#
Create a TrainDataModule.
This function is used to explicitly pass the parameters usually contained in a GenericDataConfig
to a TrainDataModule.
Since the lightning datamodule has no access to the model, make sure that the parameters passed to the datamodule are consistent with the model's requirements and are coherent.
The default augmentations are XY flip and XY rotation. To use a different set of transformations, you can pass a list of transforms to transforms
.
The data module can be used with Path, str or numpy arrays. In the case of numpy arrays, it loads and computes all the patches in memory. For Path and str inputs, it calculates the total file size and estimate whether it can fit in memory. If it does not, it iterates through the files. This behaviour can be deactivated by setting use_in_memory
to False, in which case it will always use the iterating dataset to train on a Path or str.
To use array data, set data_type
to array
and pass a numpy array to train_data
.
By default, CAREamics only supports types defined in careamics.config.support.SupportedData
. To read custom data types, you can set data_type
to custom
and provide a function that returns a numpy array from a path. Additionally, pass a fnmatch
and Path.rglob
compatible expression (e.g. "*.jpeg") to filter the files extension using extension_filter
.
In the absence of validation data, the validation data is extracted from the training data. The percentage of the training data to use for validation, as well as the minimum number of patches to split from the training data for validation can be set using val_percentage
and val_minimum_patches
, respectively.
In dataloader_params
, you can pass any parameter accepted by PyTorch dataloaders, except for batch_size
, which is set by the batch_size
parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data | Path or str or ndarray | Training data. | required |
data_type | (array, tiff, custom) | Data type, see | "array" |
patch_size | list of int | Patch size, 2D or 3D patch size. | required |
axes | str | Axes of the data, chosen amongst SCZYX. | required |
batch_size | int | Batch size. | required |
val_data | Path or str or ndarray | Validation data, by default None. | None |
transforms | list of Transforms | List of transforms to apply to training patches. If None, default transforms are applied. | None |
train_target_data | Path or str or ndarray | Training target data, by default None. | None |
val_target_data | Path or str or ndarray | Validation target data, by default None. | None |
read_source_func | Callable | Function to read the source data, used if | None |
extension_filter | str | Filter for file extensions, used if | '' |
val_percentage | float | Percentage of the training data to use for validation if no validation data is given, by default 0.1. | 0.1 |
val_minimum_patches | int | Minimum number of patches to split from the training data for validation if no validation data is given, by default 5. | 5 |
dataloader_params | dict | Pytorch dataloader parameters, by default {}. | None |
use_in_memory | bool | Use in memory dataset if possible, by default True. | True |
Returns:
Type | Description |
---|---|
TrainDataModule | CAREamics training Lightning data module. |
Examples:
Create a TrainingDataModule with default transforms with a numpy array:
>>> import numpy as np
>>> from careamics.lightning import create_train_datamodule
>>> my_array = np.arange(256).reshape(16, 16)
>>> data_module = create_train_datamodule(
... train_data=my_array,
... data_type="array",
... patch_size=(8, 8),
... axes='YX',
... batch_size=2,
... )
For custom data types (those not supported by CAREamics), then one can pass a read function and a filter for the files extension:
>>> import numpy as np
>>> from careamics.lightning import create_train_datamodule
>>>
>>> def read_npy(path):
... return np.load(path)
>>>
>>> data_module = create_train_datamodule(
... train_data="path/to/data",
... data_type="custom",
... patch_size=(8, 8),
... axes='YX',
... batch_size=2,
... read_source_func=read_npy,
... extension_filter="*.npy",
... )
If you want to use a different set of transformations, you can pass a list of transforms:
>>> import numpy as np
>>> from careamics.lightning import create_train_datamodule
>>> from careamics.config.transformations import XYFlipModel
>>> from careamics.config.support import SupportedTransform
>>> my_array = np.arange(256).reshape(16, 16)
>>> my_transforms = [
... XYFlipModel(flip_y=False),
... ]
>>> data_module = create_train_datamodule(
... train_data=my_array,
... data_type="array",
... patch_size=(8, 8),
... axes='YX',
... batch_size=2,
... transforms=my_transforms,
... )
Source code in src/careamics/lightning/train_data_module.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
|