config
DatasetConfig
#
Bases: BaseModel
Source code in src/careamics/lvae_training/dataset/config.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
data_type
instance-attribute
#
Type of the dataset, should be one of DataType
datasplit_type = None
class-attribute
instance-attribute
#
Whether to return training, validation or test split, should be one of DataSplitType
depth3D = 1
class-attribute
instance-attribute
#
Number of slices in 3D. If data is 2D depth3D is equal to 1
empty_patch_replacement_enabled = False
class-attribute
instance-attribute
#
Whether to replace the content of one of the channels with background with given probability
enable_gaussian_noise = False
class-attribute
instance-attribute
#
Whether to enable gaussian noise
grid_size = None
class-attribute
instance-attribute
#
Frame is divided into square grids of this size. A patch centered on a grid having size image_size
is returned. Grid size not used in training, used only during val / test, grid size controls the overlap of the patches
image_size
instance-attribute
#
Size of one patch of data
input_idx = None
class-attribute
instance-attribute
#
Index of the channel where the input is stored in the data
input_is_sum = False
class-attribute
instance-attribute
#
Whether the input is the sum or average of channels
max_val = None
class-attribute
instance-attribute
#
Maximum data in the dataset. Is calculated for train split, and should be externally set for val and test splits.
mode_3D = False
class-attribute
instance-attribute
#
If training in 3D mode or not
multiscale_lowres_count = None
class-attribute
instance-attribute
#
Number of LC scales
normalized_input = True
class-attribute
instance-attribute
#
If this is set to true, then one mean and stdev is used for both channels. Otherwise, two different mean and stdev are used.
num_channels = 2
class-attribute
instance-attribute
#
Number of channels in the input
overlapping_padding_kwargs = None
class-attribute
instance-attribute
#
Parameters for np.pad method
poisson_noise_factor = -1
class-attribute
instance-attribute
#
The added poisson noise factor
target_idx_list = None
class-attribute
instance-attribute
#
Indices of the channels where the targets are stored in the data
uncorrelated_channels = False
class-attribute
instance-attribute
#
Replace the content in one of the channels with given probability to make channel content 'uncorrelated'