config
MicroSplitDataConfig
#
Bases: BaseModel
Source code in src/careamics/lvae_training/dataset/config.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
data_type
instance-attribute
#
Type of the dataset, should be one of DataType
datasplit_type = None
class-attribute
instance-attribute
#
Whether to return training, validation or test split, should be one of DataSplitType
depth3D = 1
class-attribute
instance-attribute
#
Number of slices in 3D. If data is 2D depth3D is equal to 1
empty_patch_replacement_enabled = False
class-attribute
instance-attribute
#
Whether to replace the content of one of the channels with background with given probability
enable_gaussian_noise = False
class-attribute
instance-attribute
#
Whether to enable gaussian noise
grid_size = None
class-attribute
instance-attribute
#
Frame is divided into square grids of this size. A patch centered on a grid having size image_size
is returned. Grid size not used in training, used only during val / test, grid size controls the overlap of the patches
image_size
instance-attribute
#
Size of one patch of data
input_idx = None
class-attribute
instance-attribute
#
Index of the channel where the input is stored in the data
input_is_sum = False
class-attribute
instance-attribute
#
Whether the input is the sum or average of channels
max_val = None
class-attribute
instance-attribute
#
Maximum data in the dataset. Is calculated for train split, and should be externally set for val and test splits.
mode_3D = False
class-attribute
instance-attribute
#
If training in 3D mode or not
multiscale_lowres_count = None
class-attribute
instance-attribute
#
Number of LC scales
normalized_input = True
class-attribute
instance-attribute
#
If this is set to true, then one mean and stdev is used for both channels. Otherwise, two different mean and stdev are used.
num_channels = 2
class-attribute
instance-attribute
#
Number of channels in the input
overlapping_padding_kwargs = None
class-attribute
instance-attribute
#
Parameters for np.pad method
poisson_noise_factor = -1
class-attribute
instance-attribute
#
The added poisson noise factor
target_idx_list = None
class-attribute
instance-attribute
#
Indices of the channels where the targets are stored in the data
uncorrelated_channels = False
class-attribute
instance-attribute
#
Replace the content in one of the channels with given probability to make channel content 'uncorrelated'