Skip to content

ms_dataset_ref

A place for Datasets and Dataloaders.

LCMultiChDloaderRef #

Bases: MultiChDloaderRef

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
class LCMultiChDloaderRef(MultiChDloaderRef):
    def __init__(
        self,
        data_config: DatasetConfig,
        fpath: str,
        load_data_fn: Callable,
        val_fraction=None,
        test_fraction=None,
    ):
        self._padding_kwargs = (
            data_config.padding_kwargs  # mode=padding_mode, constant_values=constant_value
        )
        self._uncorrelated_channel_probab = data_config.uncorrelated_channel_probab

        super().__init__(
            data_config,
            fpath,
            load_data_fn=load_data_fn,
            val_fraction=val_fraction,
            test_fraction=test_fraction,
        )

        if data_config.overlapping_padding_kwargs is not None:
            assert (
                self._padding_kwargs == data_config.overlapping_padding_kwargs
            ), "During evaluation, overlapping_padding_kwargs should be same as padding_args. \
                It should be so since we just use overlapping_padding_kwargs when it is not None"

        else:
            self._overlapping_padding_kwargs = data_config.padding_kwargs

        self.multiscale_lowres_count = data_config.multiscale_lowres_count
        assert self.multiscale_lowres_count is not None
        self._scaled_data = [self._data]
        self._scaled_noise_data = [self._noise_data]

        assert (
            isinstance(self.multiscale_lowres_count, int)
            and self.multiscale_lowres_count >= 1
        )
        assert isinstance(self._padding_kwargs, dict)
        assert "mode" in self._padding_kwargs

        for _ in range(1, self.multiscale_lowres_count):
            shape = self._scaled_data[-1].shape
            assert len(shape) == 4
            new_shape = (shape[0], shape[1] // 2, shape[2] // 2, shape[3])
            ds_data = resize(
                self._scaled_data[-1].astype(np.float32), new_shape
            ).astype(self._scaled_data[-1].dtype)
            # NOTE: These asserts are important. the resize method expects np.float32. otherwise, one gets weird results.
            assert (
                ds_data.max() / self._scaled_data[-1].max() < 5
            ), "Downsampled image should not have very different values"
            assert (
                ds_data.max() / self._scaled_data[-1].max() > 0.2
            ), "Downsampled image should not have very different values"

            self._scaled_data.append(ds_data)
            # do the same for noise
            if self._noise_data is not None:
                noise_data = resize(self._scaled_noise_data[-1], new_shape)
                self._scaled_noise_data.append(noise_data)

    def reduce_data(
        self, t_list=None, h_start=None, h_end=None, w_start=None, w_end=None
    ):
        assert t_list is not None
        assert h_start is None
        assert h_end is None
        assert w_start is None
        assert w_end is None

        self._data = self._data[t_list].copy()
        self._scaled_data = [
            self._scaled_data[i][t_list].copy() for i in range(len(self._scaled_data))
        ]

        if self._noise_data is not None:
            self._noise_data = self._noise_data[t_list].copy()
            self._scaled_noise_data = [
                self._scaled_noise_data[i][t_list].copy()
                for i in range(len(self._scaled_noise_data))
            ]

        self.N = len(t_list)
        # TODO where tf is self._img_sz defined?
        self.set_img_sz([self._img_sz, self._img_sz], self._grid_sz)
        print(
            f"[{self.__class__.__name__}] Data reduced. New data shape: {self._data.shape}"
        )

    def _init_msg(self):
        msg = super()._init_msg()
        msg += f" Pad:{self._padding_kwargs}"
        if self._uncorrelated_channels:
            msg += f" UncorrChProbab:{self._uncorrelated_channel_probab}"
        return msg

    def _load_scaled_img(
        self, scaled_index, index: Union[int, tuple[int, int]]
    ) -> tuple[np.ndarray, np.ndarray]:
        if isinstance(index, int):
            idx = index
        else:
            idx, _ = index

        # tidx = self.idx_manager.get_t(idx)
        patch_loc_list = self.idx_manager.get_patch_location_from_dataset_idx(idx)
        nidx = patch_loc_list[0]

        imgs = self._scaled_data[scaled_index][nidx]
        imgs = tuple([imgs[None, ..., i] for i in range(imgs.shape[-1])])
        if self._noise_data is not None:
            noisedata = self._scaled_noise_data[scaled_index][nidx]
            noise = tuple([noisedata[None, ..., i] for i in range(noisedata.shape[-1])])
            factor = np.sqrt(2) if self._input_is_sum else 1.0
            imgs = tuple([img + noise[0] * factor for img in imgs])
        return imgs

    def _crop_img(self, img: np.ndarray, patch_start_loc: tuple):
        """
        Here, h_start, w_start could be negative. That simply means we need to pick the content from 0. So,
        the cropped image will be smaller than self._img_sz * self._img_sz
        """
        max_len_vals = list(self.idx_manager.data_shape[1:-1])
        max_len_vals[-2:] = img.shape[-2:]
        return self._crop_img_with_padding(
            img, patch_start_loc, max_len_vals=max_len_vals
        )

    def _get_img(self, index: int):
        """
        Returns the primary patch along with low resolution patches centered on the primary patch.
        """
        # Noise_tuples is populated when there is synthetic noise in training
        # Should have similar type of noise with the noise model
        # Starting with microsplit, dump the noise, use it instead as an augmentation if nessesary
        img_tuples, noise_tuples = self._load_img(index)
        assert self._img_sz is not None
        h, w = img_tuples[0].shape[-2:]
        if self._enable_random_cropping:
            patch_start_loc = self._get_random_hw(h, w)
            if self._3Ddata:
                patch_start_loc = (
                    np.random.choice(img_tuples[0].shape[-3] - self._depth3D),
                ) + patch_start_loc
        else:
            patch_start_loc = self._get_deterministic_loc(index)

        # LC logic is located here, the function crops the image of the highest resolution
        cropped_img_tuples = [
            self._crop_flip_img(img, patch_start_loc, False, False)
            for img in img_tuples
        ]
        cropped_noise_tuples = [
            self._crop_flip_img(noise, patch_start_loc, False, False)
            for noise in noise_tuples
        ]
        patch_start_loc = list(patch_start_loc)
        h_start, w_start = patch_start_loc[-2], patch_start_loc[-1]
        h_center = h_start + self._img_sz // 2
        w_center = w_start + self._img_sz // 2
        allres_versions = {
            i: [cropped_img_tuples[i]] for i in range(len(cropped_img_tuples))
        }
        for scale_idx in range(1, self.multiscale_lowres_count):
            # Returning the image of the lower resolution
            scaled_img_tuples = self._load_scaled_img(scale_idx, index)

            h_center = h_center // 2
            w_center = w_center // 2

            h_start = h_center - self._img_sz // 2
            w_start = w_center - self._img_sz // 2
            patch_start_loc[-2:] = [h_start, w_start]
            scaled_cropped_img_tuples = [
                self._crop_flip_img(img, patch_start_loc, False, False)
                for img in scaled_img_tuples
            ]
            for ch_idx in range(len(img_tuples)):
                allres_versions[ch_idx].append(scaled_cropped_img_tuples[ch_idx])

        output_img_tuples = tuple(
            [
                np.concatenate(allres_versions[ch_idx])
                for ch_idx in range(len(img_tuples))
            ]
        )
        return output_img_tuples, cropped_noise_tuples

    def __getitem__(self, index: Union[int, tuple[int, int]]):
        img_tuples, noise_tuples = self._get_img(index)
        if self._uncorrelated_channels:
            assert (
                self._input_idx is None
            ), "Uncorrelated channels is not implemented when there is a separate input channel."
            if np.random.rand() < self._uncorrelated_channel_probab:
                img_tuples_new = [None] * len(img_tuples)
                img_tuples_new[0] = img_tuples[0]
                for i in range(1, len(img_tuples)):
                    new_index = np.random.randint(len(self))
                    img_tuples_tmp, _ = self._get_img(new_index)
                    img_tuples_new[i] = img_tuples_tmp[i]
                img_tuples = img_tuples_new

        if self._is_train:
            if self._empty_patch_replacement_enabled:
                if np.random.rand() < self._empty_patch_replacement_probab:
                    img_tuples = self.replace_with_empty_patch(img_tuples)

        if self._enable_rotation:
            img_tuples, noise_tuples = self._rotate(img_tuples, noise_tuples)

        # add noise to input, if noise is present combine it with the image
        # factor is for the compute input not to have too much noise because the average of two gaussians
        if len(noise_tuples) > 0:
            factor = np.sqrt(2) if self._input_is_sum else 1.0
            input_tuples = []
            for x in img_tuples:
                x = (
                    x.copy()
                )  # to avoid changing the original image since it is later used for target
                # NOTE: other LC levels already have noise added. So, we just need to add noise to the highest resolution.
                x[0] = x[0] + noise_tuples[0] * factor
                input_tuples.append(x)
        else:
            input_tuples = img_tuples

        # Compute the input by sum / average the channels
        # Alpha is an amount of weight which is applied to the channels when combining them
        # How to sample alpha is still under research
        inp, alpha = self._compute_input(input_tuples)
        target_tuples = [img[:1] for img in img_tuples]
        # add noise to target.
        if len(noise_tuples) >= 1:
            target_tuples = [
                x + noise for x, noise in zip(target_tuples, noise_tuples[1:])
            ]

        target = self._compute_target(target_tuples, alpha)

        norm_target = self.normalize_target(target)

        output = [inp, norm_target]

        if self._return_alpha:
            output.append(alpha)

        if isinstance(index, int):
            return tuple(output)

        _, grid_size = index
        output.append(grid_size)
        return tuple(output)

MultiChDloaderRef #

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
class MultiChDloaderRef:
    def __init__(
        self,
        data_config: DatasetConfig,
        fpath: str,
        load_data_fn: Callable,
        val_fraction: float = None,
        test_fraction: float = None,
    ):
        """ """
        self._data_type = data_config.data_type
        self._fpath = Path(fpath)
        self._data = None
        self._3Ddata = False  # TODO wtf it was 5D
        self._tiling_mode = data_config.tiling_mode
        # by default, if the noise is present, add it to the input and target.
        self._depth3D = data_config.depth3D
        self._mode_3D = data_config.mode_3D
        # NOTE: Input is the sum of the different channels. It is not the average of the different channels.
        self._input_is_sum = data_config.input_is_sum
        self._num_channels = data_config.num_channels
        self._input_idx = data_config.input_idx
        self._tar_idx_list = data_config.target_idx_list

        self.load_data(
            data_config,
            data_config.datasplit_type,
            load_data_fn=load_data_fn,
            val_fraction=val_fraction,
            test_fraction=test_fraction,
            allow_generation=data_config.allow_generation,
        )

        self._data_shapes = self.get_data_shapes()
        self._normalized_input = data_config.normalized_input
        self._quantile = 1.0
        self._channelwise_quantile = False
        self._background_quantile = 0.0
        self._clip_background_noise_to_zero = False
        self._skip_normalization_using_mean = False
        self._empty_patch_replacement_enabled = False

        self._background_values = None

        self._overlapping_padding_kwargs = data_config.overlapping_padding_kwargs
        if self._tiling_mode in [TilingMode.TrimBoundary, TilingMode.ShiftBoundary]:
            if (
                self._overlapping_padding_kwargs is None
                or data_config.multiscale_lowres_count is not None
            ):
                # raise warning
                print("Padding is not used with this alignement style")
        else:
            assert (
                self._overlapping_padding_kwargs is not None
            ), "When not trimming boudnary, padding is needed."

        self._is_train = data_config.datasplit_type == DataSplitType.Train

        # input = alpha * ch1 + (1-alpha)*ch2.
        # alpha is sampled randomly between these two extremes
        self._start_alpha_arr = self._end_alpha_arr = self._return_alpha = None

        self._img_sz = self._grid_sz = self._repeat_factor = self.idx_manager = None

        # changed set_img_sz because "grid_size" in data_config returns false
        try:
            grid_size = data_config.grid_size
        except AttributeError:
            grid_size = data_config.image_size

        if self._is_train:
            self._start_alpha_arr = data_config.start_alpha  # TODO why only for train?
            self._end_alpha_arr = data_config.end_alpha

        self.set_img_sz(data_config.image_size, grid_size)

        self._empty_patch_replacement_enabled = (
            data_config.empty_patch_replacement_enabled and self._is_train
        )
        if self._empty_patch_replacement_enabled:
            self._empty_patch_replacement_channel_idx = (
                data_config.empty_patch_replacement_channel_idx
            )
            self._empty_patch_replacement_probab = (
                data_config.empty_patch_replacement_probab
            )
            data_frames = self._data[..., self._empty_patch_replacement_channel_idx]
            # NOTE: This is on the raw data. So, it must be called before removing the background.
            self._empty_patch_fetcher = EmptyPatchFetcher(
                self.idx_manager,
                self._img_sz,
                data_frames,
                max_val_threshold=data_config.empty_patch_max_val_threshold,
            )

        self.rm_bkground_set_max_val_and_upperclip_data(
            data_config.max_val, data_config.datasplit_type
        )

        # For overlapping dloader, image_size and repeat_factors are not related. hence a different function.

        self._mean = None
        self._std = None
        self._use_one_mu_std = data_config.use_one_mu_std

        self._target_separate_normalization = data_config.target_separate_normalization

        self._enable_rotation = data_config.enable_rotation_aug
        flipz_3D = data_config.random_flip_z_3D
        self._flipz_3D = flipz_3D and self._enable_rotation

        self._enable_random_cropping = data_config.enable_random_cropping
        self._uncorrelated_channels = (
            data_config.uncorrelated_channels and self._is_train
        )
        self._uncorrelated_channel_probab = data_config.uncorrelated_channel_probab
        assert self._is_train or self._uncorrelated_channels is False
        assert (
            self._enable_random_cropping is True or self._uncorrelated_channels is False
        )
        # Randomly rotate [-90,90]

        self._rotation_transform = None
        if self._enable_rotation:
            # TODO: fix this import
            import albumentations as A

            self._rotation_transform = A.Compose([A.Flip(), A.RandomRotate90()])

        # TODO: remove print log messages
        # if print_vars:
        #     msg = self._init_msg()
        #     print(msg)

    def get_data_shapes(self):
        if self._3Ddata:  # TODO we assume images don't have a channel dimension
            [
                [
                    im.shape if len(im.shape) == 4 else (1, *im.shape)
                    for im in self._data[ch]
                ]
                for ch in range(len(self._data))
            ]
        else:
            return [
                [
                    im.shape if len(im.shape) == 3 else (1, *im.shape)
                    for im in self._data[ch]
                ]
                for ch in range(len(self._data))
            ]

    def load_data(
        self,
        data_config,
        datasplit_type,
        load_data_fn: Callable,
        val_fraction=None,
        test_fraction=None,
        allow_generation=None,
    ):
        self._data = load_data_fn(
            data_config,
            self._fpath,
            datasplit_type,
            val_fraction=val_fraction,
            test_fraction=test_fraction,
            allow_generation=allow_generation,
        )

    # TODO check for 2D/3D data consistency with config
    # TODO check number of channels consistency with config

    def save_background(self, channel_idx, frame_idx, background_value):
        self._background_values[frame_idx, channel_idx] = background_value

    def get_background(self, channel_idx, frame_idx):
        return self._background_values[frame_idx, channel_idx]

    def rm_bkground_set_max_val_and_upperclip_data(self, max_val, datasplit_type):
        # self.remove_background() # TODO revisit
        self.set_max_val(max_val, datasplit_type)
        self.upperclip_data()

    def upperclip_data(self):
        for ch_idx, data in enumerate(self._data):
            if self.max_val[ch_idx] is not None:
                for idx in range(len(data)):
                    data[idx][data[idx] > self.max_val[ch_idx]] = self.max_val[ch_idx]

    def compute_max_val(self):
        # TODO add channelwise quantile ?
        return [
            max([np.quantile(im, self._quantile) for im in ch]) for ch in self._data
        ]

    def set_max_val(self, max_val, datasplit_type):
        if max_val is None:
            assert datasplit_type in [DataSplitType.Train, DataSplitType.All]
            self.max_val = self.compute_max_val()
        else:
            assert max_val is not None
            self.max_val = max_val

    def get_max_val(self):
        return self.max_val

    def get_img_sz(self):
        return self._img_sz

    def get_num_frames(self):
        """Returns the number of the longest channel."""
        return max(self.idx_manager.total_grid_count()[0])

    def reduce_data(
        self,
        t_list=None,
        z_start=None,
        z_end=None,
        h_start=None,
        h_end=None,
        w_start=None,
        w_end=None,
    ):
        raise NotImplementedError("Not implemented")

    def get_idx_manager_shapes(
        self, patch_size: int, grid_size: Union[int, tuple[int, int, int]]
    ):
        numC = len(self._data_shapes)
        if self._3Ddata:
            patch_shape = (1, self._depth3D, patch_size, patch_size)
            if isinstance(grid_size, int):
                grid_shape = (1, 1, grid_size, grid_size)
            else:
                assert len(grid_size) == 3
                assert all(
                    [g <= p for g, p in zip(grid_size, patch_shape[1:-1])]
                ), f"Grid size {grid_size} must be less than patch size {patch_shape[1:-1]}"
                grid_shape = (1, grid_size[0], grid_size[1], grid_size[2])
        else:
            assert isinstance(grid_size, int)
            grid_shape = (1, grid_size, grid_size)
            patch_shape = (1, patch_size, patch_size)

        return patch_shape, grid_shape

    def set_img_sz(self, image_size, grid_size: Union[int, tuple[int, int, int]]):
        """
        If one wants to change the image size on the go, then this can be used.
        Args:
            image_size: size of one patch
            grid_size: frame is divided into square grids of this size. A patch centered on a grid having size `image_size` is returned.
        """
        # hacky way to deal with image shape from new conf
        self._img_sz = image_size[-1]  # TODO revisit!
        self._grid_sz = grid_size
        shapes = self._data_shapes

        patch_shape, grid_shape = self.get_idx_manager_shapes(
            self._img_sz, self._grid_sz
        )
        self.idx_manager = GridIndexManagerRef(
            shapes, grid_shape, patch_shape, self._tiling_mode
        )

    def __len__(self):
        # If channel length is not equal, return the longest
        return max(self.idx_manager.total_grid_count()[0])

    def _init_msg(
        self,
    ):
        msg = (
            f"[{self.__class__.__name__}] Train:{int(self._is_train)} Sz:{self._img_sz}"
        )
        dim_sizes = [
            self.idx_manager.get_individual_dim_grid_count(dim)
            for dim in range(len(self._data.shape))
        ]
        dim_sizes = ",".join([str(x) for x in dim_sizes])
        msg += f" N:{self.N} NumPatchPerN:{self._repeat_factor}"
        msg += f"{self.idx_manager.total_grid_count()} DimSz:({dim_sizes})"
        msg += f" TrimB:{self._tiling_mode}"
        # msg += f' NormInp:{self._normalized_input}'
        # msg += f' SingleNorm:{self._use_one_mu_std}'
        msg += f" Rot:{self._enable_rotation}"
        if self._flipz_3D:
            msg += f" FlipZ:{self._flipz_3D}"

        msg += f" RandCrop:{self._enable_random_cropping}"
        msg += f" Channel:{self._num_channels}"
        # msg += f' Q:{self._quantile}'
        if self._input_is_sum:
            msg += f" SummedInput:{self._input_is_sum}"

        if self._empty_patch_replacement_enabled:
            msg += f" ReplaceWithRandSample:{self._empty_patch_replacement_enabled}"
        if self._uncorrelated_channels:
            msg += f" Uncorr:{self._uncorrelated_channels}"
        if self._empty_patch_replacement_enabled:
            msg += f"-{self._empty_patch_replacement_channel_idx}-{self._empty_patch_replacement_probab}"
        if self._background_quantile > 0.0:
            msg += f" BckQ:{self._background_quantile}"

        if self._start_alpha_arr is not None:
            msg += f" Alpha:[{self._start_alpha_arr},{self._end_alpha_arr}]"
        return msg

    def _crop_imgs(self, ch_idx: int, patch_idx: int, img: np.ndarray):
        h, w = img.shape[-2:]
        if self._img_sz is None:
            return (
                img,
                {"h": [0, h], "w": [0, w], "hflip": False, "wflip": False},
            )

        if self._enable_random_cropping:
            # this parameter is ambiguous. It toggles between random/deterministic patching
            patch_start_loc = self._get_random_hw(h, w)
            if self._3Ddata:
                patch_start_loc = (
                    np.random.choice(1 + img.shape[-3] - self._depth3D),
                ) + patch_start_loc
        else:
            # Patch coordinates are calculated by the index manager.
            patch_start_loc = self._get_deterministic_loc(ch_idx, patch_idx)
        cropped_img = self._crop_flip_img(img, patch_start_loc, False, False)

        return cropped_img

    def _crop_img(self, img: np.ndarray, patch_start_loc: tuple):
        if self._tiling_mode in [TilingMode.TrimBoundary, TilingMode.ShiftBoundary]:
            # In training, this is used.
            # NOTE: It is my opinion that if I just use self._crop_img_with_padding, it will work perfectly fine.
            # The only benefit this if else loop provides is that it makes it easier to see what happens during training.
            patch_end_loc = (
                np.array(patch_start_loc, dtype=np.int32)
                + self.idx_manager.patch_shape[1:-1]
            )
            if self._3Ddata:
                z_start, h_start, w_start = patch_start_loc
                z_end, h_end, w_end = patch_end_loc
                new_img = img[..., z_start:z_end, h_start:h_end, w_start:w_end]
            else:
                h_start, w_start = patch_start_loc
                h_end, w_end = patch_end_loc
                new_img = img[..., h_start:h_end, w_start:w_end]

            return new_img
        else:
            # During evaluation, this is used. In this situation, we can have negative h_start, w_start. Or h_start +self._img_sz can be larger than frame
            # In these situations, we need some sort of padding. This is not needed  in the LeftTop alignement.
            return self._crop_img_with_padding(img, patch_start_loc)

    def get_begin_end_padding(self, start_pos, end_pos, max_len):
        """
        The effect is that the image with size self._grid_sz is in the center of the patch with sufficient
        padding on all four sides so that the final patch size is self._img_sz.
        """
        pad_start = 0
        pad_end = 0
        if start_pos < 0:
            pad_start = -1 * start_pos

        pad_end = max(0, end_pos - max_len)

        return pad_start, pad_end

    def _crop_img_with_padding(
        self, img: np.ndarray, patch_start_loc, max_len_vals=None
    ):
        if max_len_vals is None:
            max_len_vals = self.idx_manager.data_shape[1:-1]
        patch_end_loc = np.array(patch_start_loc, dtype=int) + np.array(
            self.idx_manager.patch_shape[1:-1], dtype=int
        )
        boundary_crossed = []
        valid_slice = []
        padding = [[0, 0]]
        for start_idx, end_idx, max_len in zip(
            patch_start_loc, patch_end_loc, max_len_vals
        ):
            boundary_crossed.append(end_idx > max_len or start_idx < 0)
            valid_slice.append((max(0, start_idx), min(max_len, end_idx)))
            pad = [0, 0]
            if boundary_crossed[-1]:
                pad = self.get_begin_end_padding(start_idx, end_idx, max_len)
            padding.append(pad)
        # max() is needed since h_start could be negative.
        if self._3Ddata:
            new_img = img[
                ...,
                valid_slice[0][0] : valid_slice[0][1],
                valid_slice[1][0] : valid_slice[1][1],
                valid_slice[2][0] : valid_slice[2][1],
            ]
        else:
            new_img = img[
                ...,
                valid_slice[0][0] : valid_slice[0][1],
                valid_slice[1][0] : valid_slice[1][1],
            ]

        # print(np.array(padding).shape, img.shape, new_img.shape)
        # print(padding)
        if not np.all(padding == 0):
            new_img = np.pad(new_img, padding, **self._overlapping_padding_kwargs)

        return new_img

    def _crop_flip_img(
        self, img: np.ndarray, patch_start_loc: tuple, h_flip: bool, w_flip: bool
    ):
        new_img = self._crop_img(img, patch_start_loc)
        if h_flip:
            new_img = new_img[..., ::-1, :]
        if w_flip:
            new_img = new_img[..., :, ::-1]

        return new_img.astype(np.float32)

    def _load_img(self, ch_idx: int, patch_idx: int) -> tuple[np.ndarray, np.ndarray]:
        """
        Returns the channels and also the respective noise channels.
        """
        patch_loc_list = self.idx_manager.get_patch_location_from_patch_idx(
            ch_idx, patch_idx
        )
        # TODO we should be adding channel dim here probably
        img = self._data[ch_idx][patch_loc_list[0]]
        return img

    def get_mean_std(self):
        return self._mean, self._std

    def set_mean_std(self, mean_val, std_val):
        self._mean = mean_val
        self._std = std_val

    def normalize_target(self, target):
        mean_dict, std_dict = self.get_mean_std()
        mean_ = mean_dict["target"]  # .squeeze(0)
        std_ = std_dict["target"]  # .squeeze(0)
        return (target - mean_) / std_

    def get_grid_size(self):
        return self._grid_sz

    def get_idx_manager(self):
        return self.idx_manager

    def per_side_overlap_pixelcount(self):
        return (self._img_sz - self._grid_sz) // 2

    def _get_deterministic_loc(self, ch_idx: int, patch_idx: int):
        """
        It returns the top-left corner of the patch corresponding to index.
        """
        loc_list = self.idx_manager.get_patch_location_from_patch_idx(ch_idx, patch_idx)
        # last dim is channel. we need to take the third and the second last element.
        return loc_list[2:]

    @cache
    def crop_probablities(self, ch_idx):
        sizes = np.array([np.prod(x.shape) for x in self._data[ch_idx]])
        return sizes / sizes.sum()

    def sample_crop(self, ch_idx):
        idx = None
        count = 0
        while idx is None:
            count += 1
            idx = np.random.choice(
                len(self._data[ch_idx]), p=self.crop_probablities(ch_idx)
            )
            data = self._data[ch_idx][idx]  # TODO no channel and S dim ?
            # changed for ndim
            if all(
                d >= self._img_sz for d in data.shape[-2:]
            ):  # TODO dims were hardcoded
                h = np.random.randint(0, data.shape[-2] - self._img_sz)
                w = np.random.randint(0, data.shape[-1] - self._img_sz)

                if len(data.shape) > 2 and not self._3Ddata:
                    s = np.random.randint(0, data.shape[0] - 1)
                    return data[s, h : h + self._img_sz, w : w + self._img_sz]
                else:
                    return data[h : h + self._img_sz, w : w + self._img_sz]

            elif count > 100:
                raise ValueError("Cannot find a valid crop")
            else:
                idx = None

        return None

    def _l2(self, x):
        return np.sqrt(np.mean(np.array(x) ** 2))

    def compute_mean_std(self, allow_for_validation_data=False):
        """
        Note that we must compute this only for training data.
        """
        if self._3Ddata:
            raise NotImplementedError("Not implemented for 3D data")

        if self._input_is_sum:
            mean_tar_dict = defaultdict(list)
            std_tar_dict = defaultdict(list)
            mean_inp = []
            std_inp = []
            for _ in range(30000):
                crops = []
                for ch_idx in range(len(self._data)):
                    crop = self.sample_crop(ch_idx)
                    mean_tar_dict[ch_idx].append(np.mean(crop))
                    std_tar_dict[ch_idx].append(np.std(crop))
                    crops.append(crop)

                inp = 0
                for img in crops:
                    inp += img

                mean_inp.append(np.mean(inp))
                std_inp.append(np.std(inp))

            output_mean = defaultdict(list)
            output_std = defaultdict(list)

            NC = len(self._data)
            for ch_idx in range(NC):
                output_mean["target"].append(np.mean(mean_tar_dict[ch_idx]))
                output_std["target"].append(self._l2(std_tar_dict[ch_idx]))

            output_mean["target"] = np.array(output_mean["target"]).reshape(NC, 1, 1)
            output_std["target"] = np.array(output_std["target"]).reshape(NC, 1, 1)

            output_mean["input"] = np.array([np.mean(mean_inp)]).reshape(1, 1, 1)
            output_std["input"] = np.array([self._l2(std_inp)]).reshape(1, 1, 1)
        else:
            raise NotImplementedError("Not implemented for non-summed input")

        return dict(output_mean), dict(output_std)

    def set_mean_std(self, mean_dict, std_dict):
        self._data_mean = mean_dict
        self._data_std = std_dict

    def get_mean_std(self):
        return self._data_mean, self._data_std

    def _get_random_hw(self, h: int, w: int):
        """
        Random starting position for the crop for the img with index `index`.
        """
        if h != self._img_sz:
            h_start = np.random.choice(h - self._img_sz)
            w_start = np.random.choice(w - self._img_sz)
        else:
            h_start = 0
            w_start = 0
        return h_start, w_start

    def replace_with_empty_patch(self, img_tuples):
        """
        Replaces the content of one of the channels with background
        """
        empty_index = self._empty_patch_fetcher.sample()
        empty_img_tuples, empty_img_noise_tuples = self._get_img(empty_index)
        assert (
            len(empty_img_noise_tuples) == 0
        ), "Noise is not supported with empty patch replacement"
        final_img_tuples = []
        for tuple_idx in range(len(img_tuples)):
            if tuple_idx == self._empty_patch_replacement_channel_idx:
                final_img_tuples.append(empty_img_tuples[tuple_idx])
            else:
                final_img_tuples.append(img_tuples[tuple_idx])
        return tuple(final_img_tuples)

    def get_mean_std_for_input(self):
        mean, std = self.get_mean_std()
        return mean["input"], std["input"]

    def _compute_target(self, img_tuples, alpha):
        if self._tar_idx_list is not None and isinstance(self._tar_idx_list, int):
            target = img_tuples[self._tar_idx_list]
        else:
            if self._tar_idx_list is not None:
                assert isinstance(self._tar_idx_list, list) or isinstance(
                    self._tar_idx_list, tuple
                )
                img_tuples = [img_tuples[i] for i in self._tar_idx_list]

            target = np.stack(img_tuples, axis=0)
        return target

    def _compute_input_with_alpha(self, img_tuples, alpha_list):
        # assert self._normalized_input is True, "normalization should happen here"
        if self._input_idx is not None:
            inp = img_tuples[self._input_idx]
        else:
            inp = 0
            for alpha, img in zip(alpha_list, img_tuples):
                inp += img * alpha

            if self._normalized_input is False:
                return inp.astype(np.float32)

        mean, std = self.get_mean_std_for_input()
        mean = mean.squeeze()
        std = std.squeeze()
        if mean.size == 1:
            mean = mean.reshape(
                1,
            )
            std = std.reshape(
                1,
            )

        for i in range(len(mean)):
            assert mean[0] == mean[i]
            assert std[0] == std[i]

        inp = (inp - mean[0]) / std[0]
        return inp.astype(np.float32)

    def _sample_alpha(self):
        alpha_arr = []
        for i in range(self._num_channels):
            alpha_pos = np.random.rand()
            alpha = self._start_alpha_arr[i] + alpha_pos * (
                self._end_alpha_arr[i] - self._start_alpha_arr[i]
            )
            alpha_arr.append(alpha)
        return alpha_arr

    def _compute_input(self, img_tuples):
        alpha = [1 / len(img_tuples) for _ in range(len(img_tuples))]
        if self._start_alpha_arr is not None:
            alpha = self._sample_alpha()

        inp = self._compute_input_with_alpha(img_tuples, alpha)
        if self._input_is_sum:
            inp = len(img_tuples) * inp

        # TODO instead we add channel here
        if len(inp.shape) == 2 or (len(inp.shape) == 3 and self._3Ddata):
            inp = inp[None, ...]

        return inp, alpha

    def _get_index_from_valid_target_logic(self, index):
        if self._validtarget_rand_fract is not None:
            if np.random.rand() < self._validtarget_rand_fract:
                index = self._train_index_switcher.get_valid_target_index()
            else:
                index = self._train_index_switcher.get_invalid_target_index()
        return index

    def _rotate2D(self, img_tuples):
        img_kwargs = {}
        for i, img in enumerate(img_tuples):
            for k in range(len(img)):
                img_kwargs[f"img{i}_{k}"] = img[k]

        keys = list(img_kwargs.keys())
        self._rotation_transform.add_targets({k: "image" for k in keys})
        rot_dic = self._rotation_transform(image=img_tuples[0][0], **img_kwargs)

        rotated_img_tuples = []
        for i, img in enumerate(img_tuples):
            if len(img) == 1:
                rotated_img_tuples.append(rot_dic[f"img{i}_0"][None])
            else:
                rotated_img_tuples.append(
                    np.concatenate(
                        [rot_dic[f"img{i}_{k}"][None] for k in range(len(img))], axis=0
                    )
                )

        return rotated_img_tuples

    def _rotate3D(self, img_tuples):
        img_kwargs = {}
        # random flip in z direction
        flip_z = self._flipz_3D and np.random.rand() < 0.5
        for i, img in enumerate(img_tuples):
            for j in range(self._depth3D):
                for k in range(len(img)):
                    if flip_z:
                        z_idx = self._depth3D - 1 - j
                    else:
                        z_idx = j
                    img_kwargs[f"img{i}_{z_idx}_{k}"] = img[k, j]

        keys = list(img_kwargs.keys())
        self._rotation_transform.add_targets({k: "image" for k in keys})
        rot_dic = self._rotation_transform(image=img_tuples[0][0][0], **img_kwargs)
        rotated_img_tuples = []
        for i, img in enumerate(img_tuples):
            if len(img) == 1:
                rotated_img_tuples.append(
                    np.concatenate(
                        [
                            rot_dic[f"img{i}_{j}_0"][None, None]
                            for j in range(self._depth3D)
                        ],
                        axis=1,
                    )
                )
            else:
                temp_arr = []
                for k in range(len(img)):
                    temp_arr.append(
                        np.concatenate(
                            [
                                rot_dic[f"img{i}_{j}_{k}"][None, None]
                                for j in range(self._depth3D)
                            ],
                            axis=1,
                        )
                    )
                rotated_img_tuples.append(np.concatenate(temp_arr, axis=0))

        return rotated_img_tuples

    def _rotate(self, img_tuples, noise_tuples):

        if self._3Ddata:
            return self._rotate3D(img_tuples, noise_tuples)
        else:
            return self._rotate2D(img_tuples, noise_tuples)

    def _get_img(self, ch_idx: int, patch_idx: int):
        """
        Loads an image.
        Crops the image such that cropped image has content.
        """
        img = self._load_img(ch_idx, patch_idx)
        cropped_img = self._crop_imgs(ch_idx, patch_idx, img)
        return cropped_img

    def get_uncorrelated_img_tuples(self, index):
        """
        Content of channels like actin and nuclei is "correlated" in its
        respective location, this function allows to pick channels' content
        from different patches of the image to make it "uncorrelated".
        """
        img_tuples = []
        for ch_idx in range(len(self._data)):
            if ch_idx == 0:
                # dataset index becomes sample index because all channels have the same
                # length
                img_tuples.append(self._get_img(0, index))
            else:
                # get a random index from corresponding channel
                sample_index = np.random.randint(
                    self.idx_manager.total_grid_count()[0][ch_idx]
                )
                img_tuples.append(self._get_img(ch_idx, sample_index))
        return img_tuples

    def __getitem__(
        self, index: Union[int, tuple[int, int]]
    ) -> tuple[np.ndarray, np.ndarray]:

        # Uncorrelated channels means crops to create the input are taken from different
        # spatial locations of the image.
        if (
            self._uncorrelated_channels
            and np.random.rand() < self._uncorrelated_channel_probab
        ):
            input_tuples = self.get_uncorrelated_img_tuples(index)
        else:
            # 0 is the channel index, because in this case locations are the same for
            # all channels
            # tuple for compatibility with _compute_input. #TODO check
            input_tuples = (self._get_img(0, index),)

        if self._enable_rotation:
            input_tuples = self._rotate(input_tuples)

        # Weight the individual channels, typically alpha is fixed
        inp, alpha = self._compute_input(input_tuples)

        target = self._compute_target(input_tuples, alpha)
        norm_target = self.normalize_target(target)

        return inp, norm_target

__init__(data_config, fpath, load_data_fn, val_fraction=None, test_fraction=None) #

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def __init__(
    self,
    data_config: DatasetConfig,
    fpath: str,
    load_data_fn: Callable,
    val_fraction: float = None,
    test_fraction: float = None,
):
    """ """
    self._data_type = data_config.data_type
    self._fpath = Path(fpath)
    self._data = None
    self._3Ddata = False  # TODO wtf it was 5D
    self._tiling_mode = data_config.tiling_mode
    # by default, if the noise is present, add it to the input and target.
    self._depth3D = data_config.depth3D
    self._mode_3D = data_config.mode_3D
    # NOTE: Input is the sum of the different channels. It is not the average of the different channels.
    self._input_is_sum = data_config.input_is_sum
    self._num_channels = data_config.num_channels
    self._input_idx = data_config.input_idx
    self._tar_idx_list = data_config.target_idx_list

    self.load_data(
        data_config,
        data_config.datasplit_type,
        load_data_fn=load_data_fn,
        val_fraction=val_fraction,
        test_fraction=test_fraction,
        allow_generation=data_config.allow_generation,
    )

    self._data_shapes = self.get_data_shapes()
    self._normalized_input = data_config.normalized_input
    self._quantile = 1.0
    self._channelwise_quantile = False
    self._background_quantile = 0.0
    self._clip_background_noise_to_zero = False
    self._skip_normalization_using_mean = False
    self._empty_patch_replacement_enabled = False

    self._background_values = None

    self._overlapping_padding_kwargs = data_config.overlapping_padding_kwargs
    if self._tiling_mode in [TilingMode.TrimBoundary, TilingMode.ShiftBoundary]:
        if (
            self._overlapping_padding_kwargs is None
            or data_config.multiscale_lowres_count is not None
        ):
            # raise warning
            print("Padding is not used with this alignement style")
    else:
        assert (
            self._overlapping_padding_kwargs is not None
        ), "When not trimming boudnary, padding is needed."

    self._is_train = data_config.datasplit_type == DataSplitType.Train

    # input = alpha * ch1 + (1-alpha)*ch2.
    # alpha is sampled randomly between these two extremes
    self._start_alpha_arr = self._end_alpha_arr = self._return_alpha = None

    self._img_sz = self._grid_sz = self._repeat_factor = self.idx_manager = None

    # changed set_img_sz because "grid_size" in data_config returns false
    try:
        grid_size = data_config.grid_size
    except AttributeError:
        grid_size = data_config.image_size

    if self._is_train:
        self._start_alpha_arr = data_config.start_alpha  # TODO why only for train?
        self._end_alpha_arr = data_config.end_alpha

    self.set_img_sz(data_config.image_size, grid_size)

    self._empty_patch_replacement_enabled = (
        data_config.empty_patch_replacement_enabled and self._is_train
    )
    if self._empty_patch_replacement_enabled:
        self._empty_patch_replacement_channel_idx = (
            data_config.empty_patch_replacement_channel_idx
        )
        self._empty_patch_replacement_probab = (
            data_config.empty_patch_replacement_probab
        )
        data_frames = self._data[..., self._empty_patch_replacement_channel_idx]
        # NOTE: This is on the raw data. So, it must be called before removing the background.
        self._empty_patch_fetcher = EmptyPatchFetcher(
            self.idx_manager,
            self._img_sz,
            data_frames,
            max_val_threshold=data_config.empty_patch_max_val_threshold,
        )

    self.rm_bkground_set_max_val_and_upperclip_data(
        data_config.max_val, data_config.datasplit_type
    )

    # For overlapping dloader, image_size and repeat_factors are not related. hence a different function.

    self._mean = None
    self._std = None
    self._use_one_mu_std = data_config.use_one_mu_std

    self._target_separate_normalization = data_config.target_separate_normalization

    self._enable_rotation = data_config.enable_rotation_aug
    flipz_3D = data_config.random_flip_z_3D
    self._flipz_3D = flipz_3D and self._enable_rotation

    self._enable_random_cropping = data_config.enable_random_cropping
    self._uncorrelated_channels = (
        data_config.uncorrelated_channels and self._is_train
    )
    self._uncorrelated_channel_probab = data_config.uncorrelated_channel_probab
    assert self._is_train or self._uncorrelated_channels is False
    assert (
        self._enable_random_cropping is True or self._uncorrelated_channels is False
    )
    # Randomly rotate [-90,90]

    self._rotation_transform = None
    if self._enable_rotation:
        # TODO: fix this import
        import albumentations as A

        self._rotation_transform = A.Compose([A.Flip(), A.RandomRotate90()])

compute_mean_std(allow_for_validation_data=False) #

Note that we must compute this only for training data.

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def compute_mean_std(self, allow_for_validation_data=False):
    """
    Note that we must compute this only for training data.
    """
    if self._3Ddata:
        raise NotImplementedError("Not implemented for 3D data")

    if self._input_is_sum:
        mean_tar_dict = defaultdict(list)
        std_tar_dict = defaultdict(list)
        mean_inp = []
        std_inp = []
        for _ in range(30000):
            crops = []
            for ch_idx in range(len(self._data)):
                crop = self.sample_crop(ch_idx)
                mean_tar_dict[ch_idx].append(np.mean(crop))
                std_tar_dict[ch_idx].append(np.std(crop))
                crops.append(crop)

            inp = 0
            for img in crops:
                inp += img

            mean_inp.append(np.mean(inp))
            std_inp.append(np.std(inp))

        output_mean = defaultdict(list)
        output_std = defaultdict(list)

        NC = len(self._data)
        for ch_idx in range(NC):
            output_mean["target"].append(np.mean(mean_tar_dict[ch_idx]))
            output_std["target"].append(self._l2(std_tar_dict[ch_idx]))

        output_mean["target"] = np.array(output_mean["target"]).reshape(NC, 1, 1)
        output_std["target"] = np.array(output_std["target"]).reshape(NC, 1, 1)

        output_mean["input"] = np.array([np.mean(mean_inp)]).reshape(1, 1, 1)
        output_std["input"] = np.array([self._l2(std_inp)]).reshape(1, 1, 1)
    else:
        raise NotImplementedError("Not implemented for non-summed input")

    return dict(output_mean), dict(output_std)

get_begin_end_padding(start_pos, end_pos, max_len) #

The effect is that the image with size self._grid_sz is in the center of the patch with sufficient padding on all four sides so that the final patch size is self._img_sz.

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def get_begin_end_padding(self, start_pos, end_pos, max_len):
    """
    The effect is that the image with size self._grid_sz is in the center of the patch with sufficient
    padding on all four sides so that the final patch size is self._img_sz.
    """
    pad_start = 0
    pad_end = 0
    if start_pos < 0:
        pad_start = -1 * start_pos

    pad_end = max(0, end_pos - max_len)

    return pad_start, pad_end

get_num_frames() #

Returns the number of the longest channel.

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def get_num_frames(self):
    """Returns the number of the longest channel."""
    return max(self.idx_manager.total_grid_count()[0])

get_uncorrelated_img_tuples(index) #

Content of channels like actin and nuclei is "correlated" in its respective location, this function allows to pick channels' content from different patches of the image to make it "uncorrelated".

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def get_uncorrelated_img_tuples(self, index):
    """
    Content of channels like actin and nuclei is "correlated" in its
    respective location, this function allows to pick channels' content
    from different patches of the image to make it "uncorrelated".
    """
    img_tuples = []
    for ch_idx in range(len(self._data)):
        if ch_idx == 0:
            # dataset index becomes sample index because all channels have the same
            # length
            img_tuples.append(self._get_img(0, index))
        else:
            # get a random index from corresponding channel
            sample_index = np.random.randint(
                self.idx_manager.total_grid_count()[0][ch_idx]
            )
            img_tuples.append(self._get_img(ch_idx, sample_index))
    return img_tuples

replace_with_empty_patch(img_tuples) #

Replaces the content of one of the channels with background

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def replace_with_empty_patch(self, img_tuples):
    """
    Replaces the content of one of the channels with background
    """
    empty_index = self._empty_patch_fetcher.sample()
    empty_img_tuples, empty_img_noise_tuples = self._get_img(empty_index)
    assert (
        len(empty_img_noise_tuples) == 0
    ), "Noise is not supported with empty patch replacement"
    final_img_tuples = []
    for tuple_idx in range(len(img_tuples)):
        if tuple_idx == self._empty_patch_replacement_channel_idx:
            final_img_tuples.append(empty_img_tuples[tuple_idx])
        else:
            final_img_tuples.append(img_tuples[tuple_idx])
    return tuple(final_img_tuples)

set_img_sz(image_size, grid_size) #

If one wants to change the image size on the go, then this can be used. Args: image_size: size of one patch grid_size: frame is divided into square grids of this size. A patch centered on a grid having size image_size is returned.

Source code in src/careamics/lvae_training/dataset/ms_dataset_ref.py
def set_img_sz(self, image_size, grid_size: Union[int, tuple[int, int, int]]):
    """
    If one wants to change the image size on the go, then this can be used.
    Args:
        image_size: size of one patch
        grid_size: frame is divided into square grids of this size. A patch centered on a grid having size `image_size` is returned.
    """
    # hacky way to deal with image shape from new conf
    self._img_sz = image_size[-1]  # TODO revisit!
    self._grid_sz = grid_size
    shapes = self._data_shapes

    patch_shape, grid_shape = self.get_idx_manager_shapes(
        self._img_sz, self._grid_sz
    )
    self.idx_manager = GridIndexManagerRef(
        shapes, grid_shape, patch_shape, self._tiling_mode
    )