torch_utils
Convenience functions using torch.
These functions are used to control certain aspects and behaviours of PyTorch.
filter_parameters(func, user_params) #
Filter parameters according to the function signature.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
func | type | Class object. | required |
user_params | dict | User provided parameters. | required |
Returns:
| Type | Description |
|---|---|
dict | Parameters matching |
Source code in src/careamics/utils/torch_utils.py
get_device() #
Get the device on which operations take place.
Returns:
| Type | Description |
|---|---|
str | The device on which operations take place, e.g. "cuda", "cpu" or "mps". |
Source code in src/careamics/utils/torch_utils.py
get_optimizer(name) #
Return the optimizer class given its name.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | Optimizer name. | required |
Returns:
| Type | Description |
|---|---|
Optimizer | Optimizer class. |
Source code in src/careamics/utils/torch_utils.py
get_optimizers() #
Return the list of all optimizers available in torch.optim.
Returns:
| Type | Description |
|---|---|
dict | Optimizers available in torch.optim. |
Source code in src/careamics/utils/torch_utils.py
get_scheduler(name) #
Return the scheduler class given its name.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | Scheduler name. | required |
Returns:
| Type | Description |
|---|---|
Union | Scheduler class. |
Source code in src/careamics/utils/torch_utils.py
get_schedulers() #
Return the list of all schedulers available in torch.optim.lr_scheduler.
Returns:
| Type | Description |
|---|---|
dict | Schedulers available in torch.optim.lr_scheduler. |