callbacks
PyTorch Lightning callback used to update GUI with progress.
PredictionStoppedException
#
StopPredictionCallback
#
Bases: Callback
PyTorch Lightning callback to stop prediction when signaled.
This callback monitors a PredictionStatus object and stops the trainer when the state is set to STOPPED, allowing for graceful interruption of prediction processes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_status | PredictionStatus | Prediction status object that when set to STOPPED, signals the prediction to stop. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
__init__(pred_status)
#
Initialize the callback.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pred_status | PredictionStatus | Prediction status object that when set to STOPPED, signals the prediction to stop. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_predict_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx=0)
#
Check for stop signal at the start of each prediction batch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | The PyTorch Lightning trainer. | required |
pl_module | LightningModule | The Lightning module being used. | required |
batch | Any | The current batch of data. | required |
batch_idx | int | Index of the current batch. | required |
dataloader_idx | int | Index of the current dataloader, by default 0. | 0 |
Source code in src/careamics_napari/careamics_utils/callbacks.py
UpdaterCallBack
#
Bases: Callback
PyTorch Lightning callback for updating training and prediction UI states.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_queue | Queue | Training queue used to pass updates between threads. | required |
prediction_queue | Queue | Prediction queue used to pass updates between threads. | required |
Attributes:
Name | Type | Description |
---|---|---|
training_queue | Queue | Training queue used to pass updates between threads. |
prediction_queue | Queue | Prediction queue used to pass updates between threads. |
Source code in src/careamics_napari/careamics_utils/callbacks.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
__init__(training_queue, prediction_queue)
#
Initialize the callback.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_queue | Queue | Training queue used to pass updates between threads. | required |
prediction_queue | Queue | Prediction queue used to pass updates between threads. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
get_predict_queue()
#
Return the prediction queue.
Returns:
Type | Description |
---|---|
Queue | Prediction queue. |
get_train_queue()
#
Return the training queue.
Returns:
Type | Description |
---|---|
Queue | Training queue. |
on_predict_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx=0)
#
Method called at the beginning of each prediction batch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |
batch | Any | Batch. | required |
batch_idx | int | Index of the batch. | required |
dataloader_idx | int | Index of the dataloader. | 0 |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_predict_start(trainer, pl_module)
#
Method called at the beginning of the prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_train_batch_start(trainer, pl_module, batch, batch_idx)
#
Method called at the beginning of each batch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |
batch | Any | Batch. | required |
batch_idx | int | Index of the batch. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_train_epoch_end(trainer, pl_module)
#
Method called at the end of each epoch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_train_epoch_start(trainer, pl_module)
#
Method called at the beginning of each epoch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |
Source code in src/careamics_napari/careamics_utils/callbacks.py
on_train_start(trainer, pl_module)
#
Method called at the beginning of the training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trainer | Trainer | PyTorch Lightning trainer. | required |
pl_module | LightningModule | PyTorch Lightning module. | required |