training_signal
Training parameters set by the user.
TrainingSignal
dataclass
#
Training signal class.
This class holds the parameters required to run the training thread. These parameters should be set whenever the user interact with the corresponding UI elements. An instance of the class is then passed to the training worker.
Source code in src/careamics_napari/signals/training_signal.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
algorithm = 'n2v'
class-attribute
instance-attribute
#
Algorithm used for training.
axes = 'YX'
class-attribute
instance-attribute
#
Axes of the data.
batch_size = 16
class-attribute
instance-attribute
#
Batch size.
depth = 2
class-attribute
instance-attribute
#
Depth of the U-Net.
events
instance-attribute
#
Attribute allowing the registration of parameter-specific listeners.
experiment_name = ''
class-attribute
instance-attribute
#
Name of the experiment, used to export the model and save checkpoints.
independent_channels = True
class-attribute
instance-attribute
#
Whether to train the channels independently.
is_3d = False
class-attribute
instance-attribute
#
Whether the data is 3D.
layer_train = None
class-attribute
instance-attribute
#
Layer containing the training data.
layer_train_target = None
class-attribute
instance-attribute
#
Layer containing the training target data.
layer_val = None
class-attribute
instance-attribute
#
Layer containing the validation data.
layer_val_target = None
class-attribute
instance-attribute
#
Layer containing the validation target data.
load_from_disk = True
class-attribute
instance-attribute
#
Whether to load the images from disk or from the viewer.
n_channels_in_care = 1
class-attribute
instance-attribute
#
Number of input channels when training CARE and Noise2Noise.
n_channels_n2v = 1
class-attribute
instance-attribute
#
Number of channels when training Noise2Void.
n_channels_out_care = 1
class-attribute
instance-attribute
#
Number of output channels when training CARE and Noise2Noise.
n_epochs = 30
class-attribute
instance-attribute
#
Number of epochs.
num_conv_filters = 32
class-attribute
instance-attribute
#
Number of convolutional filters in the first layer.
patch_size_xy = 64
class-attribute
instance-attribute
#
Size of the patches along the X and Y dimensions.
patch_size_z = 16
class-attribute
instance-attribute
#
Size of the patches along the Z dimension.
path_train = ''
class-attribute
instance-attribute
#
Path to the training data.
path_train_target = ''
class-attribute
instance-attribute
#
Path to the training target data.
path_val = ''
class-attribute
instance-attribute
#
Path to the validation data.
path_val_target = ''
class-attribute
instance-attribute
#
Path to the validation target.
rotations = True
class-attribute
instance-attribute
#
Whether to apply rotations during augmentation.
use_channels = False
class-attribute
instance-attribute
#
Whether the data has channels.
use_n2v2 = False
class-attribute
instance-attribute
#
Whether to use N2V2.
val_minimum_split = 1
class-attribute
instance-attribute
#
Minimum number of patches or images in the validation set.
val_percentage = 0.1
class-attribute
instance-attribute
#
Percentage of the training data used for validation.
work_dir = HOME
class-attribute
instance-attribute
#
Directory where the checkpoints and logs are saved.
x_flip = True
class-attribute
instance-attribute
#
Whether to apply flipping along the X dimension during augmentation.
y_flip = True
class-attribute
instance-attribute
#
Whether to apply flipping along the Y dimension during augmentation.
TrainingSignalGroup
#
Bases: SignalGroup
Signal group for the training status dataclass.